Complete

Your complimentary use period has ended. Thank you for using PDF Complete.

FOR OFFICE USE ONLY

GOVERNMENT OF MAHARASHTRA WATER RESOURCES DEPARTMENT

HYDROLOGY PROJECT (SW) Executive Engineer, Hydrology Project Division, Nagpur

WATER QUALITY LAB LEVEL-II, NAGPUR

ANNUAL REPORT YEAR 2010-2011

Executive Engineer Hydrology Project Division, Nagpur

PREFACE

Click Here to upgrade to Unlimited Pages and Expanded Features a major constituent of all living beings. Water is available in two basic forms i.e. Surface water and Ground Water.

This report includes water quality data in Godavari Basin & Tapi Basin for the period of June 2010 to May 2011 by the agency M/s. Ashwamedh Engineers & Consultants Co. Op. So. Ltd. as awarded a contract towards Operation and Maintenance of Water Quality Lab Level-II, Nagpur for the said period. The data has been interpreted to know the affected locations.

It is an event of great pleasure to hand over this precise report on analysis of water samples in WQ Laboratory Level . II at Nagpur which is established in Jal Vidnyan Bhavan. It is also a matter of pride to state that this Laboratory is the first in Hydrology Project (SW) to be accredited with ISO 9001:2008 for implementation of Quality Management System (QMS).

This booklet attempts to briefly describe an over view and general conclusion based on the basis of water quality data of water samples collected from selected locations for defined frequencies for the reported period.

It is expected that this booklet will provide an idea in brief about Water Quality Lab. Level -II at Nagpur. Our efforts can always be updated through valuable suggestions.

> **(P.P.Mendhe)** Executive Engineer Hydrology Project Division Nagpur. (Maharashtra)

PDF Complete. nual Report

Features ring through Water Quality Lab Level-II Nagpur for the Year 2010- 2011

INDEX

Chapter	Particulars	Page No.
1	Cover Page	1
2	Preface	2
3	Executive Summary	5 - 10
4	Introduction	12 - 23
5	Methodology	25 – 29
6	Results & Observations	31 - 69
7	Conclusion	71
8	Other Activities	73
9	Annexures	75 - 84

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – I EXECUTIVE SUMMARY

CHAPTER-1

Click Here to upgrade to Unlimited Pages and Expanded Features

ECUTIVE SUMMARY

Annual Report On Water Quality Monitoring through Water Quality Lab Level-II, Nagpur for the Year 2010-2011

1.1 Preamble:

The water quality monitoring in the area of surface water is performed in order to determine the quality of water. Various parameters are analyzed in the laboratory and 6 parameters are tested at field level. All these tasks recorded are utilized for preparing the Annual Report by performing some specific exercise. This data is considered in order to specify the quality of water at each location. This also helps to determine the pollution level or concentration in each source of water at each station.

1.2 Water Quality Monitoring - Objectives

Observations of analysis of physical & chemical parameters as per % Inform Protocol for Water Quality Monitoring 2005+ for each location followed by Operation and Maintenance of Water Quality Laboratory Level-II, Nagpur as per Standard Guidelines and mandates including collection, transportation and analysis of samples, data entry in SWDES Software and preparation of the said Annual Report as per specific guidelines issued by Superintending Engineer, Hydrology Project Circle(Collection), Nashik,

1.3 Water Quality Monitoring - Scope

The Annual Report is prepared for the year 2010-2011. The Table below shows the number of sample analyzed during the reported period. In order to study water quality status station wise, all locations covered under this lab during the year 2010-2011 are considered.

PDF Complete. S ANALYSED DURING THE REPORTING PERIOD

	ipgrade to es and Expande	d Features	le	Baseline	e Sample	Dam (Re Sam		
Sr. No.	Year	First Round	Second Round	First Round	Second Round	First Round	Second Round	Total
1	2010-2011	10	79	13	36	4	92	234
Total Samples analyzed during reporting period 234								

Seasonal averages of all analyzed parameters are calculated for study of seasonal water quality trend at each location.

1.4 Methodology:

Analysis of Physical and Chemical parameters is done in the laboratory on the basis of Standard Analytical Methods, Instrument Operating Instructions, HIS Manuals, and APHA, 21st Edition 2005.

Data analyzed further validated with prescribed method as per Water Quality Manuals to verify various Ratios manually and is entered in SWDES Software for Water Quality Data Entry. Further the data is sent to State Data Center for further dissemination to user end.

Furthermore to get an idea of about data generated for the period it is decided and instructed to analyze the generated data for the said period in the form of Annual report with the help of various tools in SWDES Software to find out critical parameters and critical locations in the jurisdiction of this Lab.

Click Here to upgrade to Unlimited Pages and Expanded Feature

esults and Observations River Wardha

The water quality of River Wardha is Monitored at Four Locations vize, Drugwada, WarudBagaji, SoitDindora & Dhaba. The water quality of River Wardha does not meet the required quality criteria. The Water quality trend shows a high organic pollution at station Dhaba.BOD of Dhaba is found to be more than 2 mg/L during all seasons and is quit high with respect the limit for class-A waterbody 2 mg/L.

The DO of Dhaba found slightly Lower than Normal Limit in all seasons. The BOD at other stations except Drugwada is also found more than 2 mg/L. An increasing trend is found in the BOD at Dhaba when annual average values for last three years are compared. The insufficient DO in the Water body can result in anoxic conditions in the waterbody and can harm the flora and fauna in the region seriously. The alkalinity of The Water is slightly above a BIS (IS 10500: 1993) drinking water standard (desirable) of 200 mg/L at all stations except Drugwada. Also the concentration of colliform bacteria is high at all stations during all seasons and very high during rainy season at stations Dindora and Dhaba.

River Purna

The water quality of the River Purna is Monitored at three Locations vize, Vishroli, and Manasgaon. The Water quality trend shows river is moderately polluted. BOD in the riverbody has a value more than 2 mg/L at all stations monitored and in all the seasons. DO in the waterbody is found Low during summer season but is within the limits during rest of year. The Bacterial pollution in the water is found to be high enough to cross specified limit by CPCB. The water quality does not fulfill the criteria for safe

River Kanhan

The River water quality of River Kanhan is Monitored at two Locations vize, Temburdoh & Mathani. The water quality data reveals that the quality of the water of the River is deteriorating at station Mathani. In respect to the organic load, the water quality is found to be poor, which can be seen from the higher values of BOD. The colliform bacteria in the water are found in high concentration compared to the specified limits at all stations. pH of the water is within the limits of the BIS and CPCB.

Click Here to upgrade to

Your complimentary use period has ended. Thank you for using PDF Complete.

River Penganga

& Saiphal. The Water of River Penganga is Monitored at Four Locations vize, Kolgaon & Saiphal. The Water of River Penganga shows moderate pollution. The BOD is found more than 2 mg/L at all stations during all seasons. Colliform bacterial density at all stations is higher than the specified standard during all seasons. Alkalinity of the Water is found more than a limit of 200 mg/l specified by BIS The above factors prevents the use of water for drinking without any conventional treatment.

drinking water.

River Wainganga

Whe water Quality of river Wainganga is monitored at four locations viz. Deori, Kardha, wadsa and Wagholibuti, Tha Data reveals that, the water Quality of the River does not meet the criteria for class-A waterbody. The BOD at station wadsa and also WagholiBulti are found more than 3 mg/L during most of the year. It shows A higher degree of organic pollution is observed at station Wadsa and WagholiBulti with respect to other Locations and is evidenced by the indicated values of BOD. at station wadsa and WagholiBulti of the year 10-11. Concentration of Colliform bacteria is high in all seasons at three Locations , Deori, Kardhaand Wadsa and it makes the water unsafe for drinking purpose. The DO Values at all stations lies above 6 mg/L. The Alkalinity of Location Kardha shows slightly higher than 200 mg/L as compared to other Locations.

River Mun

The water quality of River Mun is Monitored at two Locations Kawatha & Taklikhetri.

The water in the riverbody is also saline in nature. High organic pollution is observed at station Taklikhetri which is indicated by high values of BOD and COD. The bacterial pollution at all stations is high enough to make unsafe for drinking purpose without any conventional treatment.

Click Here to upgrade to

Unlimited Pages and Expanded Features

Your complimentary use period has ended. Thank you for using PDF Complete.

River Chandrabhaga

The water quality of river chandrabhaga was monitored at station Daryapur. The river Chandrabhaga at Daryapur is grossly polluted. High BOD and COD values are observed during all seasons and particularly during peak summers. This is an indicator of high organic pollution in the riverbody. The high organic contents in the water has resulted in the depletion of DO level below a alarming concentration of 4 ppm; and in some instances during peak summers the values had reached upto 1 ppm. The very low DO during in the water is insufficient for the survival of the aquatic life. The conditions are tending to become anaerobic. The high concentration of colliform bacteria of both faecal and non faecal origin was found very high. This is a strong indicator of urban pollution and discharge of city sewage in the waterbody.

WATER QUALITY OF RESERVOIRS

The Water Quality of Four reservoirs (Dams) namely Pench, Upperwardha, Katepurna and Chapdoh which are used as a source of drinking water is monitored by the water quality Lab Level-II, Nagpur. The BOD of all reservoirs is slightly above the specified limit of 2 mg/L, and at chapdoh it is found slightly higher than at others. Higher values are obtained during summer and may be due to the increase in floral activities during summer. Colliform bacteria are found to be crossing the limit of IS 10500 for drinking water at all stations but it is within the CPCB limits at many instances.

1.6 Conclusion

From the results, it is observed that, these rivers are polluted to varying extent. The increasing urbanization and industrialization in the area is affecting the quality of the water to a great extent. The physicochemical as well as bacteriological water quality of these river systems is not satisfactory and this can further deteriorate in the nearby future.

The BOD and COD loading in the waterbody is an evidence of the anthropogenic activities in the catchment of the rivers, which is adversely influencing the water quality.

Biological parameters in all locations contain higher bacterial count is due to the discharge of sewage, drainage waste in to the water sources. The habit of open defecation is a common site on the bank of rivers that consequently floods into the river causing deterioration of the quality of the water. Even increase in human activities discharge bacteria of various type in to the water, which increase the number of count in the water.

1.7 Recommendations/Remedial Measures:

- Domestic effluents may be treated and disinfected before discharging.
- Effluents from the non-point sources may be identified. These are required to be collected and treated.
- Use of water of such polluted locations may be useful for tolerant crops and is recommended based on special study.
- Use of direct source water is to be avoided.
- Bathing at such location should be restricted.

1.8 Suggestions:

 Create mass awareness in general public regarding surface and ground water quality aspects.

the importance of conservation and restoration of

Click Here to upgrade to Unlimited Pages and Expanded Features

ort shall be publicly published every year.

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – II INTRODUCTION

Click Here to upgrade to

Your complimentary use period has ended. Thank you for using PDF Complete.

CHAPTER-2

INTRODUCTION

1.0 Water is an essential for human life and the presence of reliable source of water is vital factor for the establishment of a community. Apart from its life supporting ability, water also has a potential for spreading ill health and diseases. Thus availability and importance of safe drinking water was realised and practiced thousands of years ago by man. Hence, water quality monitoring becomes a fundamental tool for river basin planning and management. The effective monitoring and management of water quality to safeguard the precious natural riverine system is a challenge for the scientific and engineering communities alike.

2.0 Water Quality Network Layout

The water quality monitoring of River Godavari and its tributaries and River Tapi and its tributeries flowing through Vidarbha is being carried out by Water Resources Division Nagpur under Hydrology Project since 2001.

In Godavari Basin Water Quality is monitored by Water Resources Division Nagpur at 17 stations and in Tapi Basin at 8 Stations on various rivers flowing through Vidarbha. Also the water quality of 4 reservoirs, which are used as a source of drinking water, is also being monitored by this Division. The stations are classified as baseline, trend and flux stations based on the frequency of sampling and location of stations. Details of Basin and Sub basins in the region are given in **Table 1**.

Of 17 Water Quality stations on tributaries of Godavari, 12 are base line stations and 5 are trend stations.

Where as in Tapi Basin 1 is baseline station and 6 are trend stations.

Fig 1 shows Network of Water Quality Monitoring stations of various types in the jurisdiction of Water quality lab level-II under Hydrology Project Division, Nagpur.

3.0 Network Design of river basin

The network design comprises of monitoring stations which are classified as Baseline, Trend, & Flux Stations. Brief description of each type of stations is given below.

picture of Natural background Condition of a particular Baseline stations are positioned in unpolluted areas cant. Frequency of Sampling is generally one Sample in

three months.

Click Here to upgrade to

Trend Station: Trend stations are located on Main River and tributaries where the flow increases by 20%. In case of confluence, Trend Stations are located both on Tributary and main stream of the river before and after confluence. Frequency of sampling is generally 12 times in a year if the area is less than 1 lakh Sq. Km or 24 times in a year if the area is more than 1 lakh Sq. Km.

Flux Station: The flux stations are located on immediately upstream of Major River when it is about to cross the state border. These are meant to monitor the total flux of pollutants carried away by the stream.

In the present network there are 13 Baseline and 11 Trend stations. List is given in

Table 2.

Sr. No.	Major Basin	Independent River	Tributary	Sub-Tributary
			Wainganga	Pench
			Wanganga	Kanhan
	Godavari	Godavari	Wardha	
1.			Penganga	Pus
			Indravati	Bandiya
			Pranhita	
	Toni	Tani	Durne	Mun
2.	Тарі	Тарі	Purna	Wan Chandrabhaga

Table 1: Details of the Basin

Complete

Click Here to Unlimited Pag Your complimentary use period has ended. Thank you for using PDF Complete.

Table 2:

ler Jurisdiction of Water Quality Lab level-II, Nagpur

DISTRICT TAHASIL NAME OF RIVER							
NO.	STATION		TAHASIL	NAME OF RIVER			
		Baseline Sta	tions				
1	Deori	Gondia	Gondia	Wainganga			
2.	KamthiKhairi	Nagpur	Parshioni	Pench			
3.	Tembhurdoh	Nagpur	Saoner	Kanhan			
4.	Wadsachinch	Chandrapur	Wadsa	Wainganga			
5.	Wagholibuti	Gadchiroli	Gadchiroli	Wainganga			
6.	Petta	Gadchiroli	Ettapalli	Bandia			
7.	Damrencha	Gadchiroli	Aheri	Indravati			
8.	Mathani	Nagpur	Mouda	Kanhan			
9	Kardha	Bhandara	Bhandara	Wainganga			
10	Drugwada	Wardha	Ashti	Wardha			
11	Saiphal	Yeotmal	Ghatanji	Penganga			
12	Khariya	Amravati	Dharni	Тарі			
13	Mahagaon	Gadchiroli	Ettapalli	Pranhita			
		Trend Stat	ions				
14.	Vishroli	Amravati	Chandurbazar	Purna			
15.	Dhaba	Chandrapur	Gondpipri	Wardha			
16.	WarudBagaji	Amravati	Tiwasa	Wardha			
17.	Anantwadi	Yeotmal	Mahagaon	Pus			
18.	Kolgaon	Yeotmal	Wuni	Penganga			
19.	Soitdindora	Chandrapur	Warora	Wardha			
20.	Warkhed	Akola	Telhara	Wan			
21.	Daryapur	Amravati	Daryapur	Chandrabhaga			
22	Manasgaon	Buldhana	Shegaon	Purna			
23.	Kawatha	Akola	Balapur	Mun			
24.	TakliKhetri	Akola	Patur	Mun			
		Reservoi	rs				
25.	Katepurna	Akola	Barshitakli	Katepurna			
26.	Upper Wardha	Amravati	Morshi	Wardha			
27.	Pench	Nagpur	Parshioni	Pench			
28	Chapdoh	Yeotmal	Arni	Waghadi			

Click Here to upgrade to

Your complimentary use period has ended. Thank you for using PDF Complete.

<u>1 of Water Quality Lab Level-II, Nagpur</u>

in Analytical Quality Control Exercises

1) Within Lab AQC:

Within Lab AQC conducted in December – 2010.

Samples (Sample A and Sample B) are analysed during the period 02-12-2010 to 24-12-2010.

The overall performance of the Lab stands **100%**.

2) Inter Lab AQC:

26th Proficiency Testing (AQC / Water Exercise) conducted by CPCB in February-2011.

Samples received on dated 21-02-2011. Samples analysed during the period 21-02-2011 to 25-02-2011. And the Performance Report received in June-2011. The overall performance of the Lab stands **72.7 %**.

3) <u>Intra Lab AQC:</u>

Inter Lab AQC 2011 conducted by Water quality Lab Level-II, Pune, during the period February-2011 to April-2011.

We participated in All three Rounds. And the Average percentage of All three rounds stands **92%.**

Click Here to upgrade to Unlimited Pages and Expanded Features

Annual Report for the Period of 2010-2011

Water Quality Laboratory Level II at Nagpur

Salient Features :-

1. General Structure of Laboratory:

1) Sampling Locations as per Water Quality Network covered in this Lab:-28

2) Monthly sample collection: - 32 samples / 19 Samples.

3) Frequency of sampling: - Trend: . Monthly
Baseline Samples : Once in Three Months
Dam samples:. Fortnightly

4) Govt. staff related to Laboratory: -

- 1. Mr.P.P.Mendhe., Executive Engineer
- 2. Mr.C.D.Garibdas, Sub Divisional Engineer
- 3. Mr. M.M.Dange (AE-II. & Govt. Analyst)
- 4. Mr. N.L. Kature (C.E.A)

5) Lab operating Agency: - Ashwamedh Engineers & Consultants C.S.L.

a) Indoor Work . **1.**Mr. Tanveer A. Ansari. (Chief Analyst)

2. Mr. Pranali R.Deshmukh. (Senior Analyst)

3. Miss. Neelima S.Ingle. (Microbiologist)

4.Miss. Rubina R. Khan (Analyst)

5. Mr. Sanjay Dhobale (Lab. Assistant)

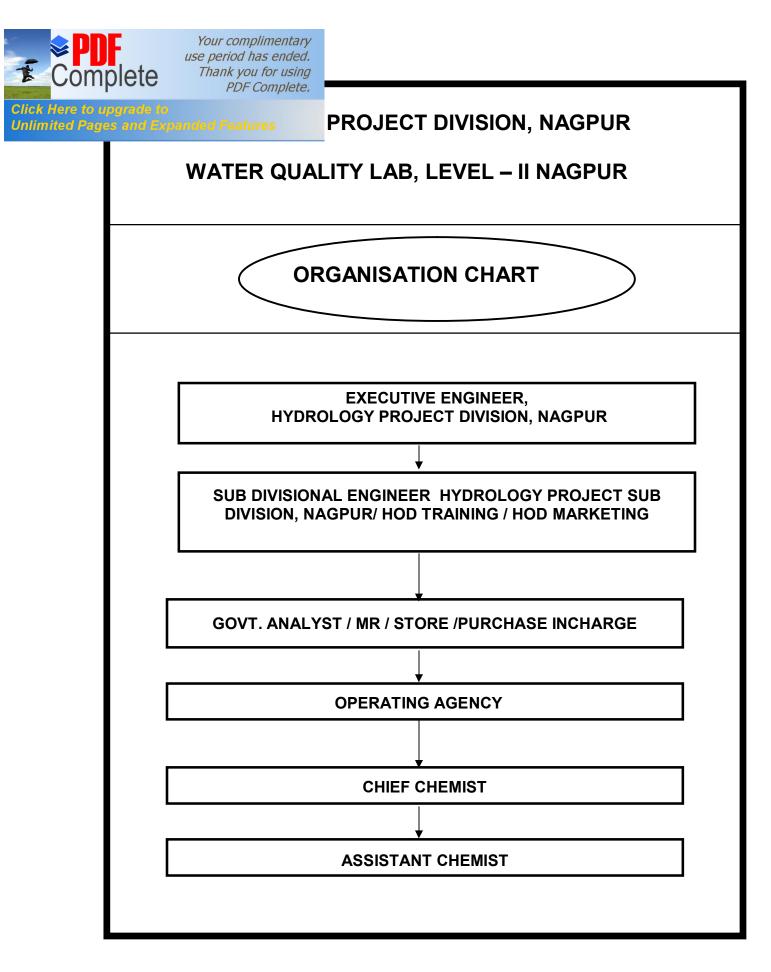
b) Outdoor Work . **1.** Mr. V. H. Hande (Field Chemist)

2. Mr. J.S.Tale (Field Chemist)

Click Here to upgrade to Unlimited Pages and Expanded Features

2. Scope of Work: Operation and Maintenance of water Quality Laboratory Level-II, Nagpur

Outdoor Work - Surface water sampling and transporting the sample from selected Water Quality network sampling points as per schedule of sampling during the said period.


The Surface Water sampling includes:

- a) Field determination as per standard guideline.
- **b)** Field parameters to be tested on site & entry to be taken on ID form.
- c) Sample to be transported to laboratory within prescribed time limit.

2.1 Indoor Work:

- Day to Day Operation and Maintenance of Water Quality Laboratory Level II.
- The work includes analysis of water samples as per the test procedures.
- Operating the instruments as per specified instruction manual.
- Entry of data in SWDES Software.
- Participating in Analytical Quality Control Exercise (AQC) round.
- i) Within Laboratory AQC ii) Intra Laboratory AQC iii) AQC by CPCB
- The Laboratory staff employed;
 - 1) Chief Chemist: 1 No.
 - 2) Sr. Research Officers: 2 Nos.
 - 3) Research Assistant: 1 No.
 - 4) Lab. Assistant: 1 No.
- The Indoor work also includes keeping data record.
- Log book of Lab equipment
- Preparation of monthly sampling Schedule.
- Keeping sampling record, instruments operation, Laboratory Management, demonstration
- Training to Departmental staff as and when required.

Information to visitors & Customer Satisfaction. Work is carried out as per flow chart.

ocation covered under the jurisdiction of

uality Lab Level-II, Nagpur

Click Here to upgrade to Unlimited Pages and Expanded Features

Sr. No.				No. Of Samples in 2010-2011
	B	aseline Samples		
1	Deori	Wainganga	Once in three months	3
2.	KamthiKhairi	Pench	Once in three months	4
3.	Tembhurdoh	Kanhan	Once in three months	4
4.	Wadsachinch	Wainganga	Once in three months	4
5.	Wagholibuti	Wainganga	Once in three months	4
6.	Petta	Bandia	Once in three months	4
7.	Damrencha	Indravati	Once in three months	4
8.	Mathani	Kanhan	Once in three months	4
9	Kardha	Wainganga	Once in three months	3
10	Drugwada	Wardha	Once in three months	4
11	Saiphal	Penganga	Once in three months	3
12	Khariya	Тарі	Once in three months	4
13	Mahagaon	Pranhita	Once in three months	4

€ E Con	Your comp use period ha Thank you PDF C	as ended.		I
lick Here to		of Divor	Frequency of sampling	No. Of Samples in 2010-2011
	T	rend Samples		
14.	Vishroli	Purna	Monthly	8
15.	Dhaba	Wardha	Monthly	12
16.	WarudBagaji	Wardha	Monthly	11
17.	Anantwadi	Pus	Monthly	11
18.	Kolgaon	Penganga	Monthly	11
19.	Soitdindora	Wardha	Monthly	12
20.	Warkhed	Wan	Monthly	0
21.	Daryapur	Chandrabhaga	Monthly	3
22.	Manasgaon	Purna	Monthly	9
23.	Kawatha	Mun	Monthly	5
24.	TakliKhetri	Mun	Monthly	7
		Reservoir Sam	ples	
25.	Katepurna	Katepurna	twice in a Month	24
26.	Upper Wardha	Wardha	twice in a Month	24
27.	Pench	Pench	twice in a Month	24
28	Chapdoh	Waghadi	twice in a Month	24

<u>Total No. of Samples collected and analyzed during Reported Period</u> (June-2010 to May-2011) – 234 Nos.

Click Here to upgrade to Unlimited Pages and Expanded Features

owing Water Quality Parameter at W.Q. Lab Level-II Nagpur

Trend Samples

Sr. No.	First Round (Once in a year)	Second Round (Rest of the year)	
	Parameters	Parameters	
1	Colour	Colour	
2	Odour	Odour	
3	Temperature	Temperature	
4	рН	рН	
5	Electrical Conductivity	Electrical Conductivity	
6	Dissolved Oxygen	Dissolved Oxygen	
7	Turbidity	Turbidity	
8	Total Dissolved Solids	Total Solids	
9	Total Solids	Total Dissolved Solids	
10	Suspended Solids	Suspended Solids	
11	NH3-N	NH3-N	
12	NO2	NO2	
13	NO3	NO3	
14	Total Phosphorus	Total Phosphorus	
15	Biochemical Oxygen Demand (BOD)	Biochemical Oxygen Demand (BOD)	
16	Chemical Oxygen Demand (COD)	Chemical Oxygen Demand (COD)	
17	Alkalinity	Alkalinity	
18	Potassium	Potassium	
19	Sodium	Sodium	
20	Total Hardness	Total Hardness	
21	Calcium	Calcium	
22	Magnesium	Magnesium	
23	Chlorides	Chlorides	
24 & 25	СОЗ, НСОЗ	СО3, НСО3	
26	Total Colliforms	Total coliforms	
27	Fecal coliforms	Feacal Colliforms	
28	Fluoride		
29	Boron		

Click Here to upgrade to Unlimited Pages and Expanded Features

Thank you for using howing Water Quality Parameter

at W.Q. Lab Level-II Nagpur

Click Here to upgrade to Unlimited Pages and Expanded Features

Baseline Samples

Sr. No.	First Round (Once in a year)	Second Round (Rest of the year)
	Parameters	Parameters
1	Colour	Colour
2	Odour	Odour
3	Temperature	Temperature
4	рН	рН
5	Electrical Conductivity	Electrical Conductivity
6	Dissolved Oxygen	Dissolved Oxygen
7	Turbidity	Total Solids
8	Total Dissolved Solids	Total Dissolved Solids
9	Total Solids	Suspended Solids
10	Suspended Solids	NO2
11	NH3-N	NO3
12	NO2	Total Phosphorus
13	NO3	Biochemical Oxygen Demand (BOD)
14	Total Phosphorus	Chemical Oxygen Demand (COD)
15	Biochemical Oxygen Demand (BOD)	Alkalinity
16	Chemical Oxygen Demand (COD)	Potassium
17	Alkalinity	Sodium
18	Potassium	Total Hardness
19	Sodium	Calcium
20	Total Hardness	Magnesium
21	Calcium	Chlorides
22	Magnesium	Total coliforms
23	Chlorides	Feacal Colliforms
24 & 25	СО3, НСО3	СО3, НСО3
26	Total Colliforms	
27	Fecal coliforms	
28	Fluoride	
29	Boron	

Thank you for using howing Water Quality Parameter

at W.Q. Lab Level-II Nagpur

Click Here to upgrade to Unlimited Pages and Expanded Features

Dam Samples

Sr. No.	First Round (Once in a year)	Second Round (Rest of the year)
	Parameters	Parameters
1	Colour	Colour
2	Odour	Odour
3	Temperature	Temperature
4	рН	рН
5	Electrical Conductivity	Electrical Conductivity
6	Dissolved Oxygen	Dissolved Oxygen
7	Turbidity	Total Solids
8	Total Dissolved Solids	Total Dissolved Solids
9	Total Solids	Suspended Solids
10	Suspended Solids	NO2
11	NH3-N	NO3
12	NO2	Total Phosphorus
13	NO3	Biochemical Oxygen Demand (BOD)
14	Total Phosphorus	Chemical Oxygen Demand (COD)
15	Biochemical Oxygen Demand (BOD)	Alkalinity
16	Chemical Oxygen Demand (COD)	Potassium
17	Alkalinity	Sodium
18	Potassium	Total Hardness
19	Sodium	Calcium
20	Total Hardness	Magnesium
21	Calcium	Chlorides
22	Magnesium	Total coliforms
23	Chlorides	Feacal Colliforms
24 & 25	СО3, НСО3	СО3, НСО3
26	Total Colliforms	Total Kjeldahl nitrogen
27	Fecal coliforms	Chlorophyll – A
28	Fluoride	
29	Boron	
30	Total Kjeldahl nitrogen	
31	Chlorophyll – A	

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – III METHODOLOGY

CHAPTER-3

METHODOLOGY

This laboratory covers Surface Water component which covers Godavari & Tapi Basins and some selected reservoirs.

3.1 Rivers

Water is life and rivers are lifelines. Fortunately almost the entire country is crisscrossed by rivers. Geographical area of the state is divided in five river basins viz. Godavari, Tapi, Narmada, Krishna and west flowing rivers in Konkan region.

3.2 Water Quality Monitoring - Objectives

Observations of analysis of physical & chemical parameters as per % Inform Protocol for Water Quality Monitoring Order 2005+ for each location followed by Operation and Maintenance of Water Quality Laboratory Level-II, Nagpur as per Standard Guidelines and mandates including collection, transportation and analysis of samples, data entry in SWDES Software and preparation of the said Annual Report as per specific guidelines issued by Superintending Engineer, Hydrology Project Circle(Collection), Nashik.

3.3 Methodology:

Analysis of Physical and Chemical parameters is done in the laboratory on the basis of Standard Analytical Methods, Instrument Operating Instructions, HIS Manuals, and APHA, 21st Ed., 2005.

Data analyzed further validated with prescribed method as per Water Quality Manuals to verify various Ratios manually and is entered in SWDES Software for Water Quality Data Entry. Further the data is sent to State Data Center for further dissemination to user end.

Furthermore to get an idea of about data generated for the period it is decided and instructed to analyzed the generated data for the said period in the form of Annual report with the help of various tools in SWDES Software to find out critical parameters and critical locations in the jurisdiction of this Lab.

3.4 Flow Chart

The work of analysis of sample is being monitored on the basis of flow chart generated in the lab as per standard guidelines and analysis of sample is performed as per guidelines of world bank with HIS manuals and APHA ,21 st Ed, 2005 as a standard procedures for analysis of samples.

Click Here to upgrade to Unlimited Pages and Expanded Features

manded Features Sampling Source with the

Sampling Source with the help of Depth Sampler

Treatment: D.O. Fixing, Preservation of MPN Sample, Colour, Odour Temp, pH, Ec, tested on field, and fill up ID form.

At Laboratory: Inward the Sample, Giving the Sr. No. to the sample noted into sample entry register

ID form entry taken into SWEDS Software

Tests are carried out in lab as per Standard Procedures. These tests are : Microbiological test, Chlorophyll-a, Temp, pH, D.O., B.O.D, Ammonia, Nitrate, Nitrite TDS, TSS, C.O.D., Turbidity, Alkalinity, Carbonate & Bicarbonate, Chloride, Fluoride, Boron, Iron, Sodium, Potassium, Total Hardness, Phosphorous, Calcium etc.

Observations & calculations of all Analyzed Parameters are entered in the Data Sheet

The results of parameters are checked & validated

After Validation Check, all the data is entered in to Data Record and Validation Register

This data is finally entered in to SWEDS Software

Data sent to Executive Engineer, HDP Division, Nashik for further action

OF ANALYSIS OF PRIVATE regular) WATER SAMPLE

Unlimited Pages and Expanded Features

Sample Collection from Party/Person

Sample forms fill up and issuing receipt of cash received.

Inward the Sample, Giving the Sr. No. to the sample noted into sample entry register

Sample Analysis as per the customeros requirement

Observations & calculations of all Analyzed Parameters

The results of parameters are checked & prepared

Issue of Final Result to Customer

of Water Quality samples the following parameters zed during the Period 2010-2011

Click Here to upgrade to Unlimited Pages and Expanded Features

ers and the methodology used for the analysis.

Sr. No.	Parameters	Methodology
1	Determination of Alkalinity Phenolphthalein	Standard. Methods, APHA 21 st Edition.
2	Determination of Alkalinity Total	Standard. Methods, APHA 21 st Edition.
3	Determination of Aluminium	Standard. Methods, APHA 21 st Edition
4	Determination of Bicarbonates	Standard. Methods, APHA 21 st Edition
5	Determination of Biochemical Oxygen Demand	Standard. Methods, APHA 21 st Edition
6	Determination of Boron	Standard. Methods, APHA 21 st Edition
7	Determination of Calcium	Standard. Methods, APHA 21 st Edition
8	Determination of Carbonates	Standard. Methods, APHA 21 st Edition
9	Determination of Chemical Oxygen Demand	Standard. Methods, APHA 21 st Edition
10	Determination of Chlorides	Standard. Methods, APHA 21 st Edition
11	Determination of Chlorophyll . A	Standard. Methods, APHA 21 st Edition
12	Determination of Feacal Coliforms (MPN)	Standard. Methods, APHA 21 st Edition
13	Determination of Total Coliforms (MPN)	Standard. Methods, APHA 21 st Edition
14	Determination of Colour	Standard. Methods, APHA 21 st Edition
15	Determination of Dissolved Oxygen	Standard. Methods, APHA 21 st Edition
16	Determination of Conductivity	Standard. Methods, APHA 21 st Edition
17	Determination of Fluorides	Standard. Methods, APHA 21 st Edition
18	Determination of Hardness	Standard. Methods, APHA 21 st Edition
19	Determination of Iron	Standard. Methods, APHA 21 st Edition
20	Determination of Magnesium	Standard. Methods, APHA 21 st Edition
21	Determination of Manganese	Standard. Methods, APHA 21 st Edition
22	Determination of Ammonia Nitrogen	Standard. Methods, APHA 21 st Edition
23	Determination of Nitrates	Standard. Methods, APHA 21 st Edition
24	Determination of Nitrite	Standard. Methods, APHA 21 st Edition

o upgrade ages and	to Expanded Features	Methodology
25	Determination of Organic Nitrogen	Standard. Methods, APHA 21 st Edition
26	Determination of Total Oxidised Nitrogen	Standard. Methods, APHA 21 st Edition
27	Determination of Odour	Standard. Methods, APHA 21 st Edition
28	Determination of pH	Standard. Methods, APHA 21 st Edition
29	Determination of Ortho Phosphates	Standard. Methods, APHA 21 st Edition
30	Determination of Total Phosphates	Standard. Methods, APHA 21 st Edition
31	Determination of Potassium	Standard. Methods, APHA 21 st Edition
32	Determination of Silica	Standard. Methods, APHA 21 st Edition
33	Determination of Sodium	Standard. Methods, APHA 21 st Edition
34	Determination of Suspended Solids- TSS	Standard. Methods, APHA 21 st Edition
35	Determination of Total Solids- TS	Standard. Methods, APHA 21 st Edition
36	Determination of Dissolved Solids- TDS	Standard. Methods, APHA 21 st Edition
37	Determination of Sulphates	Standard. Methods, APHA 21 st Edition
38	Determination of Temperature	Standard. Methods, APHA 21 st Edition
39	Determination of Turbidity	Standard. Methods, APHA 21 st Edition
42	Determination of Free Carbon dioxide	Standard. Methods, APHA 21 st Edition
41	Determination of Phenols	Standard. Methods, APHA 21 st Edition
42	Determination of Chlorine, Residual	Standard. Methods, APHA 21 st Edition
43	Determination of Permanganate Value/ Oxygen Absorbed/ Tidy Test	Standard. Methods, APHA 21 st Edition
44	Determination of Oil & Grease	Standard. Methods, APHA 21 st Edition
45	Determination of Acidity	Standard. Methods, APHA 21 st Edition
46	Analysis Results (Expression)	Standard. Methods, APHA 21 st Edition
47	Data Record and Validation	Standard. Methods, APHA 21 st Edition
48	Waste Disposal	HP Approved

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – IV RESULT & OBSERVATIONS

CHAPTER - 4 TS AND OBSERVATIONS

Unlimited Pages and Expanded Features

4.1 RESULTS AND OBSERVATIONS

The water quality monitoring in the area of surface water is performed in order to determine the quality of water. Various parameters are analyzed in the laboratory and 6 parameters are tested at field level. All these tasks recorded are utilized for preparing the Annual Report by performing some specific exercise. This data is considered in order to specify the quality of water at each location. This also helps to determine the pollution level or concentration in each source of water at each station.

4.2 Water Quality status- Station wise Exercise

In order to study water quality status station wise, all locations covered under this lab during the year 2010-2011 are considered. Seasonal averages of all analyzed parameters are calculated for study of seasonal water quality trend at each location.

4.3 Objectives

Observations of all physical & chemical parameters are analysed for each location individually & interpretation of data is done to identify seasonal trend. Also critical parameters are identified at every location, including finding out the probable causes behind it at every location and every parameter.

Graphs (2010-2011)

	DATA ABSTRAC	FOR RIVER WAI	NGANGA FOR 2	2010-2011	
		Station: De	ori		
				Season	
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer
			Mean	Mean	Mean
1	рН	-	8.4	8.4	8.3
2	EC	µmhos/cm	356.0	346.0	320.0
3	DO	mg/L	6.4	7.3	6.8
4	BOD	mg/L	3.0	2.8	3.4
5	COD	mg/L	13.0	9.0	14.0
6	TDS	mg/L	220.0	212.0	198.0
7	Alkalinity	mg/L as CaCO3	200.0	212.0	192.0
8	Chloride	mg/L	16.0	22.0	13.0
9	Calcium (as Ca)	mg/L	36.8	32.0	29.6
10	Magnesium (as Mg)	mg/L	15.6	18.5	16.5
11	Total colliforms	MPN/100 ml	78.0	14.0	0.0
12	Faecal colliforms	MPN/100 ml	45.0	5.0	0.0
		Station: Kar	dha		
				Season	
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer
			Mean	Mean	Mean
1	рН	-	8.0	8.3	8.4
2	EC	µmhos/cm	214.0	335.0	281.0
3	DO	mg/L	7.0	6.9	7.0
4	BOD	mg/L	2.8	2.9	3.0
5	COD	mg/L	10.0	10.0	11.0
6	TDS	mg/L	128.0	208.0	166.0
7	Alkalinity	mg/L as CaCO3	120.0	184.0	160.0
8	Chloride	mg/L	8.0	21.0	14.0
9	Calcium (as Ca)	mg/L	25.6	35.2	29.6
10	Magnesium (as Mg)	mg/L	6.8	10.7	15.1
11	Total colliforms	MPN/100 ml	490.0	26.0	7.0
12	Faecal colliforms	MPN/100 ml	230.0	8.0	0.0

Click Here to upgrade to Unlimited Pages and Exp

7

8

Alkalinity

Chloride

iges and Expanded Features Station: WadsaChinch					
			Season		
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer
			Mean	Mean	Mean
1	рН	-	8.2	8.2	8.3
2	EC	µmhos/cm	309.0	391.0	346.0
3	DO	mg/L	6.5	6.8	5.2
4	BOD	mg/L	3.0	3.2	4.0
5	COD	mg/L	11.0	13.0	14.0
6	TDS	mg/L	182.0	242.0	212.0
7	Alkalinity	mg/L as CaCO3	154.0	216.0	192.0
8	Chloride	mg/L	22.0	26.0	21.0
9	Calcium (as Ca)	mg/L	22.4	40.0	30.4
10	Magnesium (as Mg)	mg/L	10.2	13.6	16.5
11	Total colliforms	MPN/100 ml	384.0	70.0	21.0
12	Faecal colliforms	MPN/100 ml	150.0	23.0	9.0
Station: WagholiButti					
			Season		
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer
110.			Mean	Mean	Mean
1	рН	-	8.4	8.4	8.4
2	EC	µmhos/cm	274.5	352.0	319.0
3	DO	mg/L	6.9	7.0	7.0
4	BOD	mg/L	3.0	3.0	3.0
5	COD	mg/L	11.5	11.0	11.0
6	TDS	mg/L	161.0	208.0	196.0
7	Alkalinity	mg/L as CaCO3	128.0	192.0	184.0
8	Chloride	mg/L	21.0	22.0	20.0
9	Calcium (as Ca)	mg/L	17.6	35.2	25.6
10	Magnesium (as Mg)	mg/L	11.7	14.6	13.6
11	Total colliforms	MPN/100 ml	204.0	130.0	34.0
12	Faecal colliforms	MPN/100 ml	107.5	22.0	11.0
	DATA ABSTR	ACT FOR RIVER KA	NHAN FOR 201	0-2011	
Station: Temburdoh					
_			Season		
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer
			Mean	Mean	Mean
1	рН	-	8.1	8.4	8.4
2	EC	µmhos/cm	408.5	390.0	541.0
3	DO	mg/L	6.0	6.6	7.2
4	BOD	mg/L	3.0	3.0	2.9
5	COD	mg/L	11.5	12.0	10.0
6	TDS	mg/L	235.0	232.0	314.0
					1

226.0

10.5

204.0

28.0

328.0

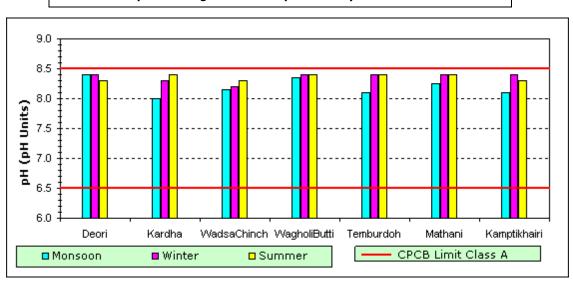
14.0

mg/L as CaCO3

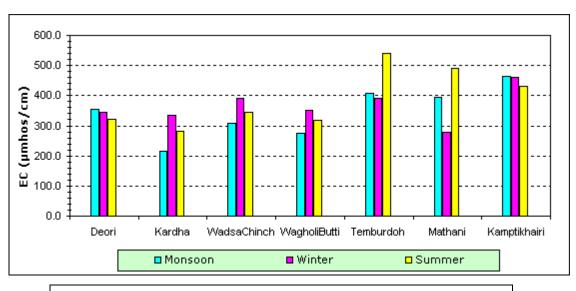
mg/L

imited Pages and Exp		MPN/100 ml	102.0	7.0	5.0
k Here to upgrade to		MPN/100 ml	310.0	22.0	11.0
Complete	PDF Complete.	mg/L	14.6	17.5	32.1
Complete	Thank you for using	mg/L	42.4	40.0	44.8
PNF	Your complimentary use period has ended.				

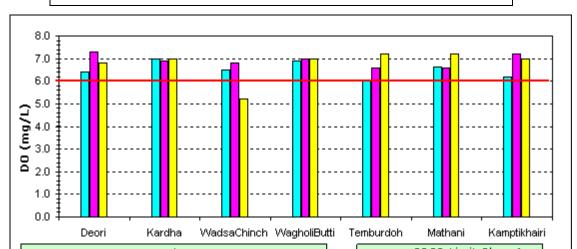
Click Unlin


Station: Mathani

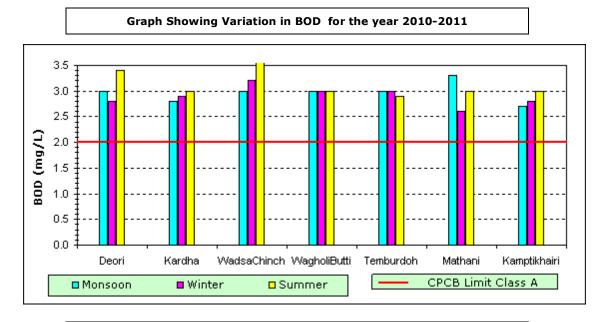
			Season			
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
			Mean	Mean	Mean	
1	рН	-	8.3	8.4	8.4	
2	EC	µmhos/cm	396.0	280.0	490.0	
3	DO	mg/L	6.7	6.6	7.2	
4	BOD	mg/L	3.3	2.6	3.0	
5	COD	mg/L	13.0	9.0	12.0	
6	TDS	mg/L	232.0	172.0	292.0	
7	Alkalinity	mg/L as CaCO3	162.0	160.0	244.0	
8	Chloride	mg/L	43.0	15.0	40.0	
9	Calcium (as Ca)	mg/L	28.0	33.6	32.0	
10	Magnesium (as Mg)	mg/L	14.6	14.6	24.8	
11	Total colliforms	MPN/100 ml	660.0	33.0	12.0	
12	Faecal colliforms	MPN/100 ml	300.0	11.0	5.0	

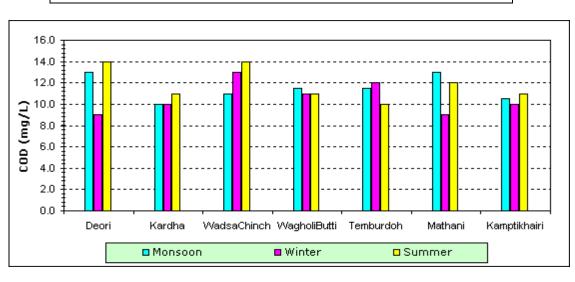

DATA ABSTRACT FOR RIVER PENCH FOR 2010-2011

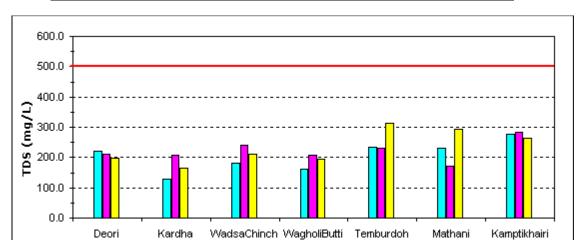
	Station: Kamptikhairi									
				Season						
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer					
			Mean	Mean	Mean					
1	рН	-	8.1	8.4	8.3					
2	EC	µmhos/cm	464.5	460.0	432.0					
3	DO	mg/L	6.2	7.2	7.0					
4	BOD	mg/L	2.7	2.8	3.0					
5	COD	mg/L	10.5	10.0	11.0					
6	TDS	mg/L	278.0	284.0	264.0					
7	Alkalinity	mg/L as CaCO3	276.0	244.0	312.0					
8	Chloride	mg/L	11.5	42.0	10.0					
9	Calcium (as Ca)	mg/L	40.8	44.8	36.8					
10	Magnesium (as Mg)	mg/L	18.5	17.5	26.2					
11	Total colliforms	MPN/100 ml	285.0	49.0	22.0					
12	Faecal colliforms	MPN/100 ml	96.0	13.0	8.0					

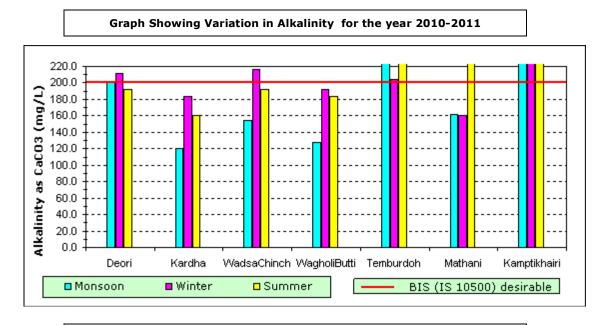


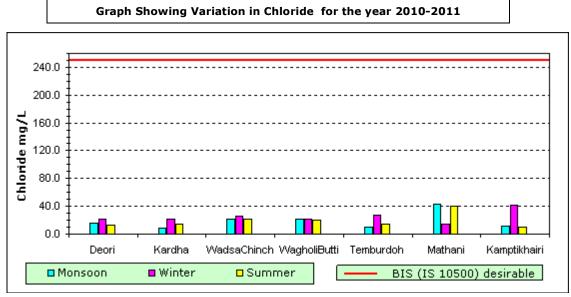
Graph Showing Variation in pH for the year 2010-2011

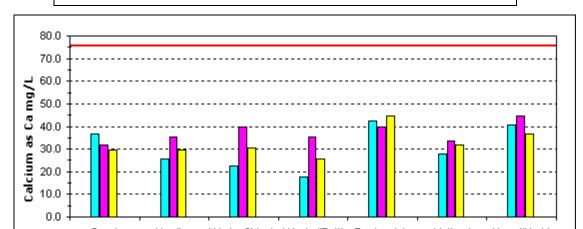


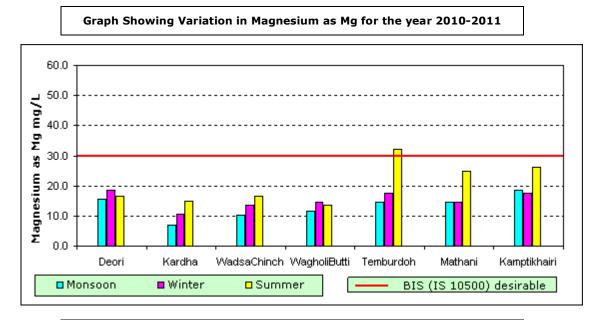

Graph Showing Variation in EC for the year 2010-2011

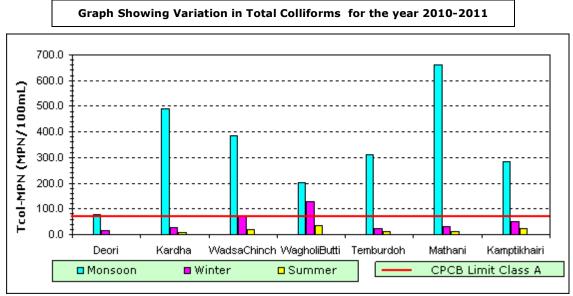


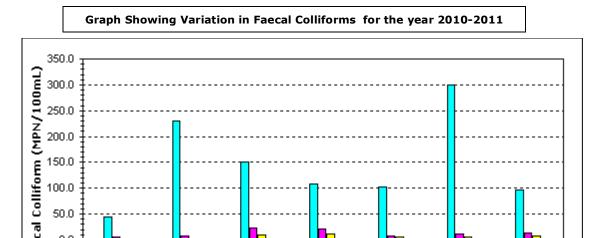


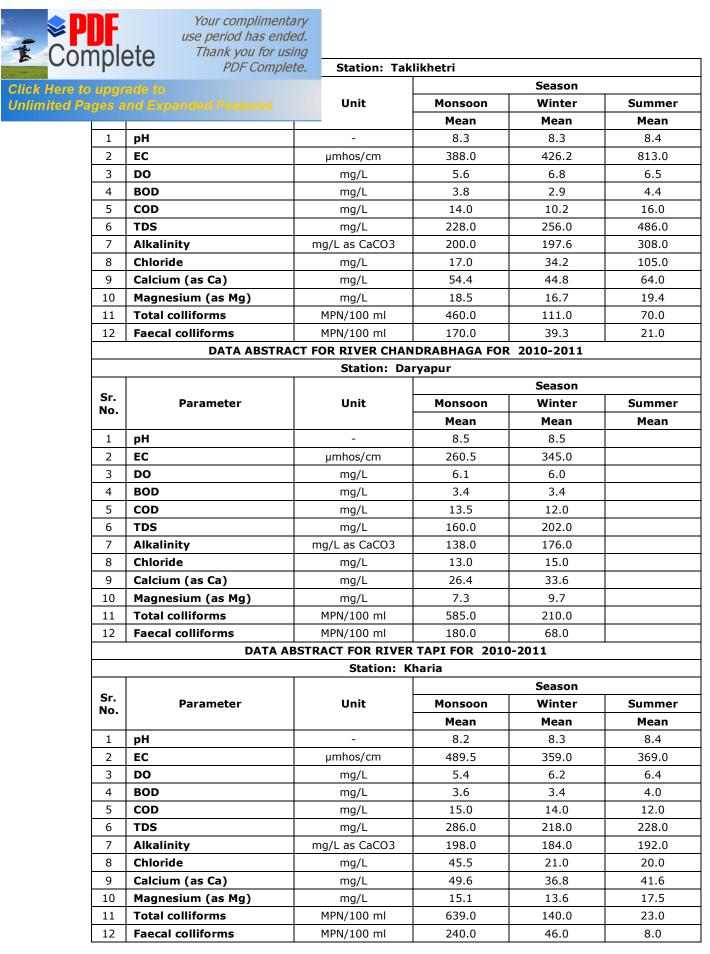

Graph Showing Variation in COD for the year 2010-2011







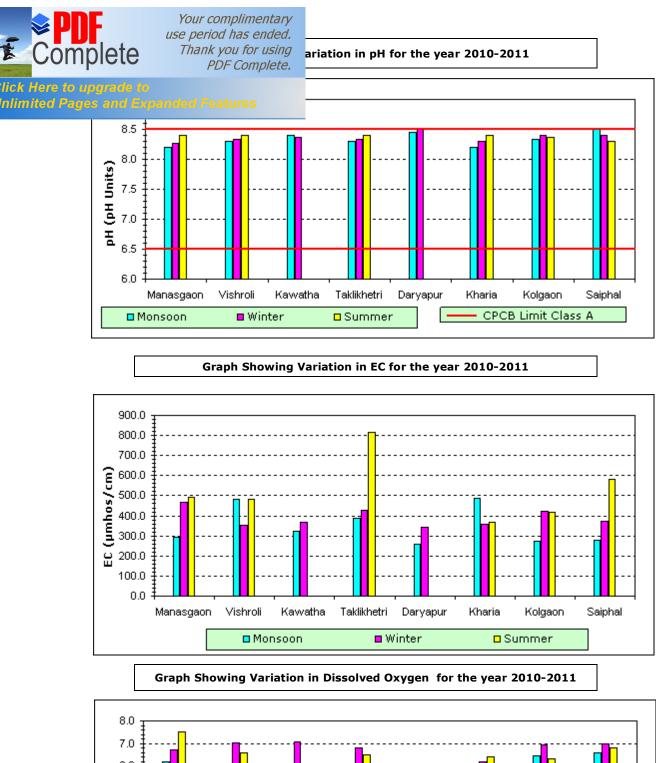

Graph Showing Variation in Calcium as Ca for the year 2010-2011

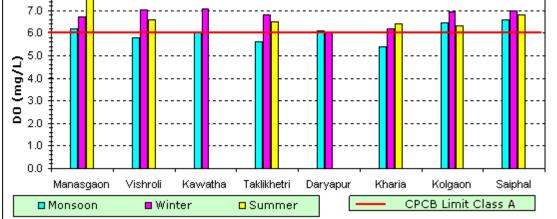


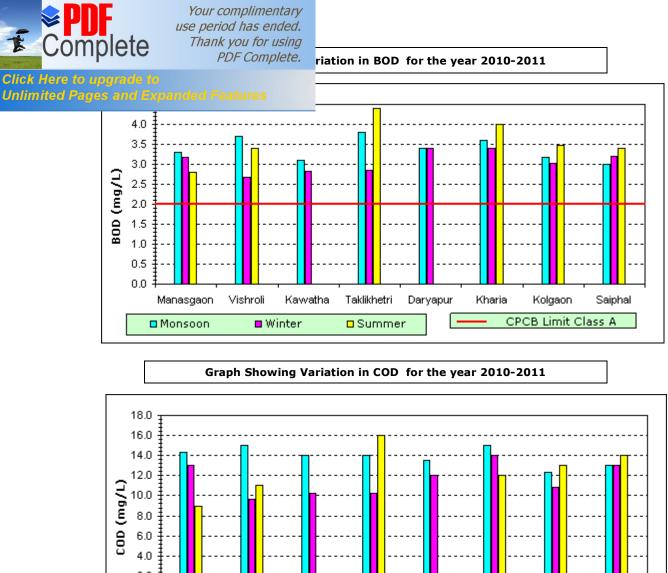
enten non	e de elegnad		
Unlimited	d Pages and	d Expanded Features	

	DATA A	BSTRACT FOR RIVER	PURNA FOR 201	0-2011		
		Station: Man	asgaon			
_				Season		
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
NO.			Mean	Mean	Mean	
1	pН	-	8.2	8.3	8.4	
2	EC	µmhos/cm	291.0	466.4	493.0	
3	DO	mg/L	6.2	6.7	7.5	
4	BOD	mg/L	3.3	3.2	2.8	
5	COD	mg/L	14.3	13.0	9.0	
6	TDS	mg/L	173.3	281.6	292.0	
7	Alkalinity	mg/L as CaCO3	136.0	213.6	264.0	
8	Chloride	mg/L	17.0	40.0	25.0	
9	Calcium (as Ca)	mg/L	30.4	43.8	49.6	
10	Magnesium (as Mg)	mg/L	10.7	18.5	19.4	
11	Total colliforms	MPN/100 ml	1500.0	135.8	22.0	
12	Faecal colliforms	MPN/100 ml	780.0	35.8	7.0	
		Station: Vi	shroli		•	
				Season		
Sr.	Parameter	Unit	Monsoon	Winter	Summer	
No.			Mean	Mean	Mean	
1	рН	-	8.3	8.3	8.4	
2	EC	µmhos/cm	482.5	354.6	480.0	
3	DO	mg/L	5.8	7.0	6.6	
4	BOD	mg/L	3.7	2.7	3.4	
5	COD	mg/L	15.0	9.6	11.0	
6	TDS	mg/L	286.0	216.8	282.0	
7	Alkalinity	mg/L as CaCO3	234.0	178.4	248.0	
8	Chloride	mg/L	33.5	21.6	27.0	
9	Calcium (as Ca)	mg/L	39.2	39.0	52.8	
10	Magnesium (as Mg)	mg/L	12.6	12.2	14.6	
11	Total colliforms	MPN/100 ml	260.0	99.6	9.0	
12	Faecal colliforms	MPN/100 ml	92.5	39.4	4.0	
	DATA	ABSTRACT FOR RIVER	MUN FOR 2010	-2011		
		Station: Kay	watha			
				Season		
Sr.	Parameter	Unit	Monsoon	Winter	Summer	
No.			Mean	Mean	Mean	
1	рН	-	8.4	8.4		
2	EC	µmhos/cm	325.0	365.8	1	
3	DO	mg/L	6.0	7.1	1	
4	BOD	mg/L	3.1	2.8	1	

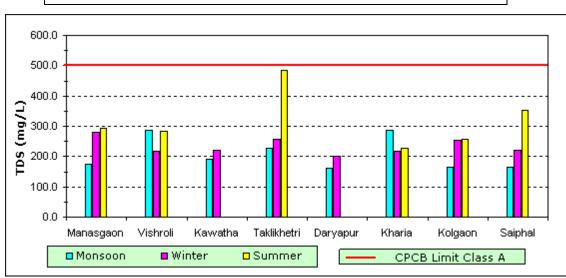
€ Con	D F nple	Your complimental use period has ended Thank you for usin PDF Complete	d. g mg/L	14.0 190.0	10.3 220.0	
Click Here to	upar	ade to	g/L as CaCO3	160.0	183.0	
		nd Expanded Features	mg/L	17.0	22.0	
		culcium (us cu)	mg/L	30.4	38.4	
	10	Magnesium (as Mg)	mg/L	12.6	14.8	
	11	Total colliforms	MPN/100 ml	1700.0	70.0	
	12	Faecal colliforms	MPN/100 ml	790.0	21.5	

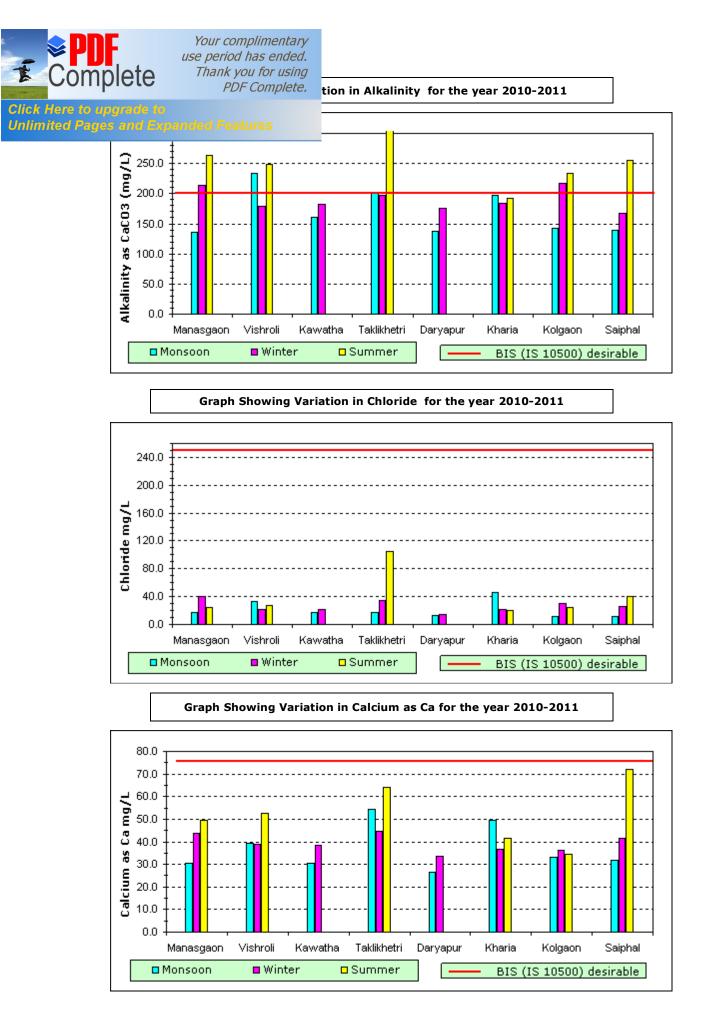


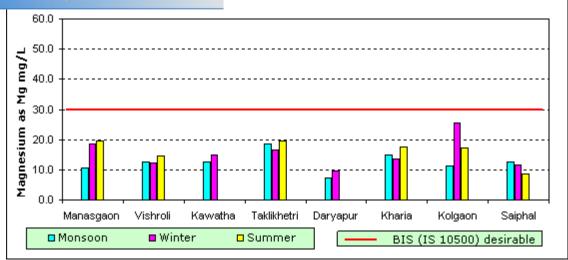


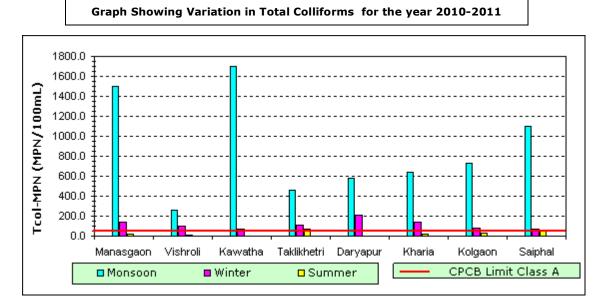

FOR RIVER PENGANGA FOR 2010-2011

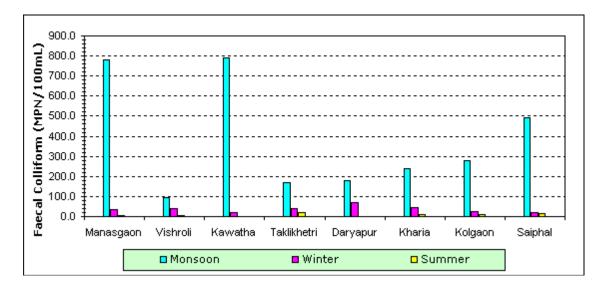
ade to	Station: Ko	lgaon			
nd Expanded Features		Season			
Parameter	Unit	Monsoon	Winter	Summer	
		Mean	Mean	Mean	
рН	-	8.3	8.4	8.4	
EC	µmhos/cm	272.0	424.8	417.7	
DO	mg/L	6.5	6.9	6.3	
BOD	mg/L	3.2	3.0	3.5	
COD	mg/L	12.3	10.8	13.0	
TDS	mg/L	166.0	255.2	258.0	
Alkalinity	mg/L as CaCO3	142.7	216.4	233.3	
Chloride	mg/L	11.0	30.2	24.7	
Calcium (as Ca)	mg/L	33.1	36.2	34.7	
Magnesium (as Mg)	mg/L	11.3	25.5	17.3	
Total colliforms	MPN/100 ml	733.3	81.0	31.0	
Faecal colliforms	MPN/100 ml	276.7	23.8	8.0	
	Station: Sa	iphal			
			Season		
	Parameter Parameter pH EC DO BOD COD TDS Alkalinity Chloride Calcium (as Ca) Magnesium (as Mg) Total colliforms	ParameterUnitPH-ECμmhos/cmDOmg/LBODmg/LCODmg/LTDSmg/LAlkalinitymg/L as CaCO3Chloridemg/LCalcium (as Ca)mg/LMagnesium (as Mg)mg/LFaecal colliformsMPN/100 ml	Term ParameterMonsoonParameterUnitMonsoonpH-8.3ECµmhos/cm272.0DOmg/L6.5BODmg/L3.2CODmg/L12.3TDSmg/L166.0Alkalinitymg/L as CaCO3142.7Chloridemg/L33.1Magnesium (as Mg)mg/L11.3Total colliformsMPN/100 ml733.3	ParameterSeasonParameterUnitMonsoonWinterpH-8.38.4ECµmhos/cm272.0424.8DOmg/L6.56.9BODmg/L3.23.0CODmg/L12.310.8TDSmg/L166.0255.2Alkalinitymg/L as CaCO3142.7216.4Chloridemg/L33.136.2Magnesium (as Mg)mg/L31.135.5Total colliformsMPN/100 ml733.381.0Faecal colliforms	


				Season				
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer			
			Mean	Mean	Mean			
1	рН	-	8.5	8.4	8.3			
2	EC	µmhos/cm	279.0	371.0	584.0			
3	DO	mg/L	6.6	7.0	6.8			
4	BOD	mg/L	3.0	3.2	3.4			
5	COD	mg/L	13.0	13.0	14.0			
6	TDS	mg/L	166.0	220.0	352.0			
7	Alkalinity	mg/L as CaCO3	140.0	168.0	256.0			
8	Chloride	mg/L	12.0	26.0	40.0			
9	Calcium (as Ca)	mg/L	32.0	41.6	72.0			
10	Magnesium (as Mg)	mg/L	12.6	11.7	8.8			
11	Total colliforms	MPN/100 ml	1100.0	70.0	49.0			
12	Faecal colliforms	MPN/100 ml	490.0	22.0	14.0			




Graph Showing Variation in TDS for the year 2010-2011




in Magnesium as Mg for the year 2010-2011

Unlimited Pages and Expanded Features

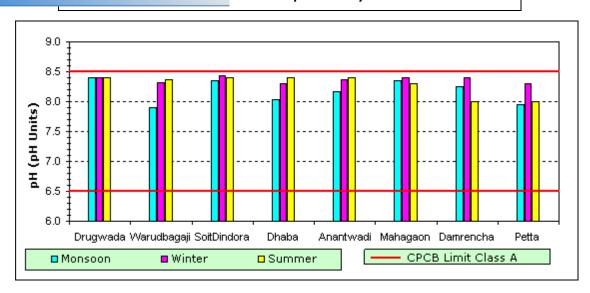
Graph Showing Variation in Faecal Colliforms for the year 2010-2011

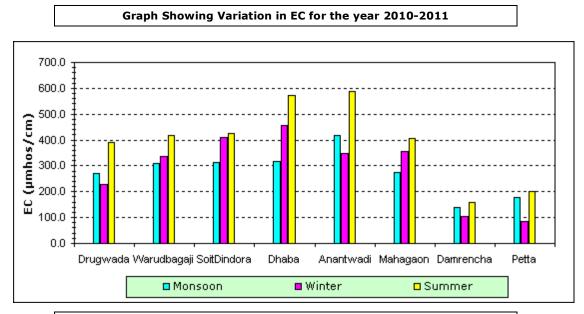
Click Here to upgrade to Unlimited Pages and Expanded Features

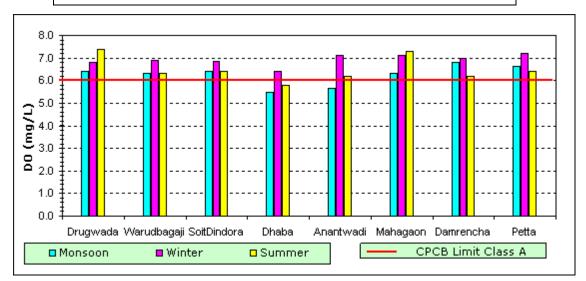
Your complimentary use period has ended. Thank you for using PDF Complete. CT FOR RIVER WARDHA FOR 2010-2011

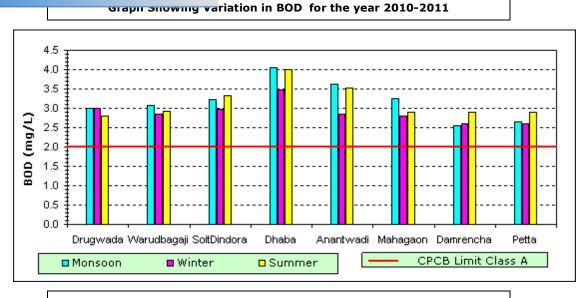
re to	upgra	de to	Station: Drugwada				
		d Expanded Features	nded Features		Season		
	No.	Faranieter	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	8.4	8.4	8.4	
	2	EC	µmhos/cm	269.5	230.0	389.0	
	3	DO	mg/L	6.4	6.8	7.4	
	4	BOD	mg/L	3.0	3.0	2.8	
	5	COD	mg/L	11.5	11.0	9.0	
	6	TDS	mg/L	164.0	138.0	228.0	
	7	Alkalinity	mg/L as CaCO3	156.0	132.0	192.0	
	8	Chloride	mg/L	11.5	10.0	20.0	
	9	Calcium (as Ca)	mg/L	22.4	27.2	38.4	
	10	Magnesium (as Mg)	mg/L	16.0	6.8	16.5	
	11	Total colliforms	MPN/100 ml	374.5	34.0	21.0	
	12	Faecal colliforms	MPN/100 ml	121.0	11.0	7.0	
			Station: WarudbBagaji				
	6 -				Season		
	Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	7.9	8.3	8.4	
	2	EC	µmhos/cm	308.3	335.0	418.3	
	3	DO	mg/L	6.3	6.9	6.3	
	4	BOD	mg/L	3.1	2.8	2.9	
	5	COD	mg/L	12.3	9.8	10.0	
	6	TDS	mg/L	178.7	199.6	253.3	
	7	Alkalinity	mg/L as CaCO3	141.3	180.0	236.0	
	8	Chloride	mg/L	17.0	18.4	19.7	
	9	Calcium (as Ca)	mg/L	30.9	34.2	39.5	
	10	Magnesium (as Mg)	mg/L	8.4	13.8	15.2	
	11	Total colliforms	MPN/100 ml	816.7	86.6	11.0	
	12	Faecal colliforms	MPN/100 ml	301.0	38.8	2.3	
			Station:	SoitDindora			
	6.				Season	1	
	Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	8.4	8.4	8.4	
	2	EC	µmhos/cm	315.0	408.6	426.7	
	3	DO	mg/L	6.4	6.9	6.4	
	4	BOD	mg/L	3.2	3.0	3.3	
	5	COD	mg/L	13.3	11.4	12.0	
	6	TDS	mg/L	184.5	244.0	258.0	
	7	Alkalinity	mg/L as CaCO3	165.0	216.8	238.7	
	8	Chloride	mg/L	13.8	28.4	24.0	
	9	Calcium (as Ca)	mg/L	29.6	33.9	33.1	
	10	Magnesium (as Mg)	mg/L	14.6	25.1	19.0	
	11	Total colliforms	MPN/100 ml	665.0	105.4	9.7	
	12	Faecal colliforms	MPN/100 ml	268.3	30.8	2.3	

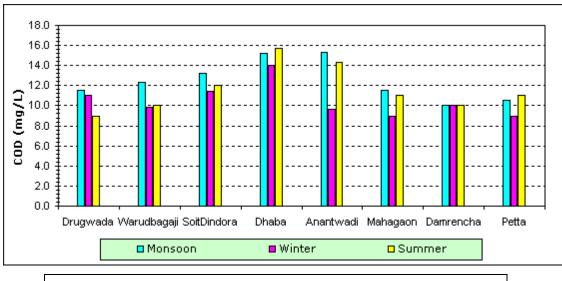
₽	DF	Your complimentary use period has ended.					
Con	nple	PDF Complete.		: Dhaba			
lick Here to					Season		
		d Expanded Features	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	8.0	8.3	8.4	
	2	EC	µmhos/cm	315.5	455.0	574.0	
	3	DO	mg/L	5.5	6.4	5.8	
	4	BOD	mg/L	4.1	3.5	4.0	
	5	COD	mg/L	15.3	14.0	15.7	
	6	TDS	mg/L	185.5	268.4	352.0	
	7	Alkalinity	mg/L as CaCO3	133.0	213.6	257.3	
	8	Chloride	mg/L	27.0	37.8	51.3	
	9	Calcium (as Ca)	mg/L	26.0	39.4	47.5	
	10	Magnesium (as Mg)	mg/L	10.7	23.1	27.5	
	11	Total colliforms	MPN/100 ml	547.5	247.8	32.7	
	12	Faecal colliforms	MPN/100 ml	160.0	74.0	11.0	
			TRACT FOR RIVE			1110	
				Anantwadi			
	Season						
	Sr.	Parameter	Unit	Monsoon	Winter	Summer	
	No.		-	Mean	Mean	Mean	
	1	pH	-	8.2	8.4	8.4	
	2	EC	µmhos/cm	417.0	348.8	586.3	
	3	DO	mg/L	5.7	7.1	6.2	
	4	BOD	mg/L	3.6	2.8	3.5	
	5	COD	mg/L	15.3	9.6	14.3	
	6	TDS	mg/L	246.7	209.6	353.3	
	7	Alkalinity	mg/L as CaCO3	152.0	175.2	268.0	
	8	Chloride	mg/L	41.3	22.0	40.7	
	9	Calcium (as Ca)	mg/L	43.2	36.8	67.2	
	10	Magnesium (as Mg)	mg/L	11.7	15.4	12.8	
	11	Total colliforms	MPN/100 ml	446.7	211.0	22.3	
	12	Faecal colliforms	MPN/100 ml	160.0	67.6	6.0	
			ACT FOR RIVER PI			010	
				Mahagaon			
					Season		
	Sr.	Parameter	Unit	Monsoon	Winter	Summer	
	No.		-	Mean	Mean	Mean	
	1	рН	-	8.4	8.4	8.3	
	2	EC	µmhos/cm	273.5	357.0	406.0	
	3	DO	mg/L	6.3	7.1	7.3	
			_		2.8	2.9	
	4	BOD	mg/L I	3.3		1	
	4	BOD COD	mg/L mg/L			11.0	
		COD	mg/L	11.5	9.0	11.0 234.0	
	5 6	COD TDS	mg/L mg/L	11.5 161.0	9.0 218.0	234.0	
	5 6 7	COD TDS Alkalinity	mg/L mg/L mg/L as CaCO3	11.5 161.0 132.0	9.0 218.0 164.0	234.0 176.0	
	5 6 7 8	COD TDS Alkalinity Chloride	mg/L mg/L mg/L as CaCO3 mg/L	11.5 161.0 132.0 23.0	9.0 218.0 164.0 36.0	234.0 176.0 31.0	
	5 6 7 8 9	COD TDS Alkalinity Chloride Calcium (as Ca)	mg/L mg/L mg/L as CaCO3 mg/L mg/L	11.5 161.0 132.0 23.0 16.0	9.0 218.0 164.0 36.0 33.6	234.0 176.0 31.0 38.4	
	5 6 7 8	COD TDS Alkalinity Chloride	mg/L mg/L mg/L as CaCO3 mg/L	11.5 161.0 132.0 23.0	9.0 218.0 164.0 36.0	234.0 176.0 31.0	

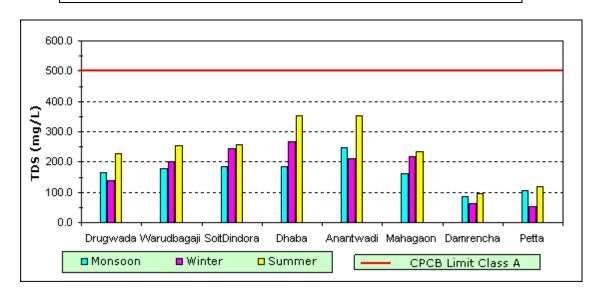



Here to		i Di compietei	Γ FOR RIVER IN	IDRAVATI FOR 2	010-2011		
		d Expanded Features	Station: Damrencha				
				Season			
	Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	8.3	8.4	8.0	
	2	EC	µmhos/cm	137.5	105.0	160.0	
	3	DO	mg/L	6.8	7.0	6.2	
	4	BOD	mg/L	2.6	2.6	2.9	
	5	COD	mg/L	10.0	10.0	10.0	
	6	TDS	mg/L	85.0	64.0	94.0	
	7	Alkalinity	mg/L as CaCO3	84.0	60.0	84.0	
	8	Chloride	mg/L	6.5	7.0	8.0	
	9	Calcium (as Ca)	mg/L	13.6	9.6	16.0	
	10	Magnesium (as Mg)	mg/L	4.9	4.9	5.8	
	11	Total colliforms	MPN/100 ml	1270.0	40.0	7.0	
	12	Faecal colliforms	MPN/100 ml	305.0	14.0	2.0	
		DATA ABSTI	RACT FOR RIVER	BANDIA FOR 20	10-2011		
			Statio	n: Petta			
					Season		
	Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
				Mean	Mean	Mean	
	1	рН	-	8.0	8.3	8.0	
	2	EC	µmhos/cm	179.5	86.0	200.0	
	3	DO	mg/L	6.7	7.2	6.4	
	4	BOD	mg/L	2.7	2.6	2.9	
	5	COD	mg/L	10.5	9.0	11.0	
	6	TDS	mg/L	106.0	52.0	118.0	
	7	Alkalinity	mg/L as CaCO3	96.0	52.0	104.0	
	8	Chloride	mg/L	12.0	5.0	9.0	
	9	Calcium (as Ca)	mg/L	12.8	6.4	27.2	
	10	Magnesium (as Mg)	mg/L	7.3	3.9	3.9	
	11	Total colliforms	MPN/100 ml	565.0	27.0	0.0	
	12	Faecal colliforms	MPN/100 ml	166.5	8.0	0.0	

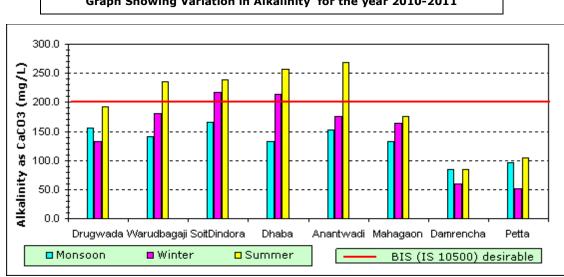

Click Here to upgrade to Unlimited Pages and Expanded Features



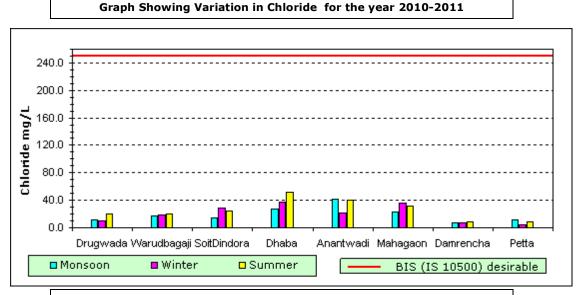


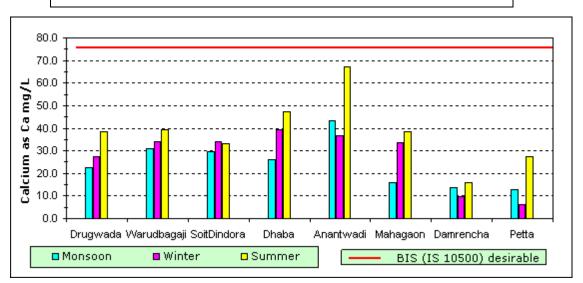

Unlimited Pages and Expanded Features

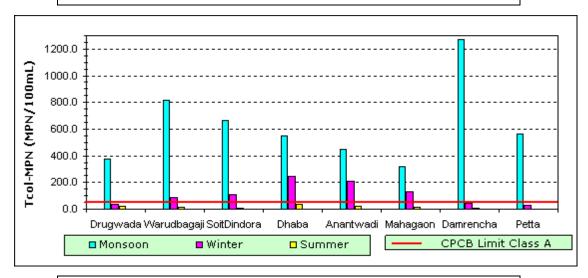
Graph Showing Variation in COD for the year 2010-2011

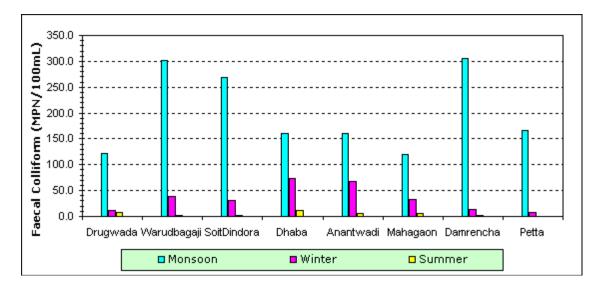


Graph Showing Variation in TDS for the year 2010-2011




use period has ended. Thank you for using PDF Complete.

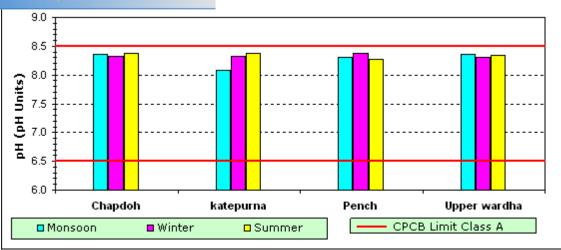


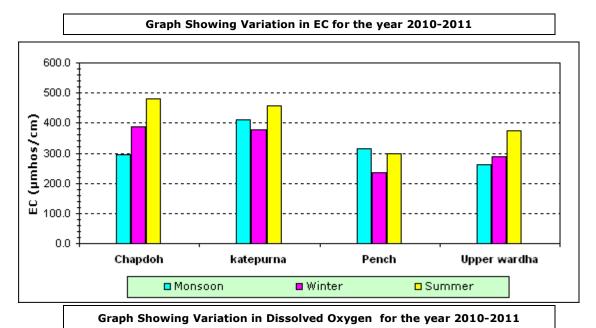

Graph Showing Variation in Magnesium as Mg for the year 2010-2011

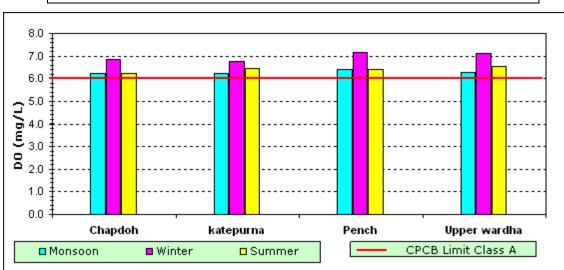
Graph Showing Variation in Total Colliforms for the year 2010-2011

Graph Showing Variation in Faecal Colliforms for the year 2010-2011

Click Here to upgrade to Unlimited Pages and Expanded Features

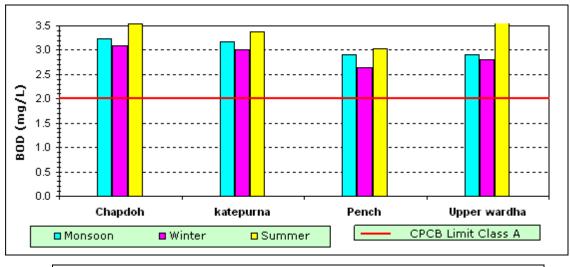

€ Cor	DF nple	Your complimentar use period has ended Thank you for usin	і. g					
Click Here to								
		d Expanded Features	Station: Ch	lapdon	Season			
	Sr.	Parameter	Unit	Monsoon	Winter	Summer		
	No.	Falameter	onit	Mean	Mean			
	1			8.4	8.3	Mean 8,4		
		pH EC	-		388.8	480.2		
	2	-	µmhos/cm	295.5				
	3	DO	mg/L	6.3	6.9	6.3		
	4	BOD	mg/L	3.2	3.1	3.6		
	5	COD	mg/L	12.4	11.2	13.7		
	6	TDS	mg/L	176.3	232.4	291.3		
	7	Alkalinity	mg/L as CaCO3	148.0	200.8	226.0		
	8	Chloride	mg/L	14.9	23.6	41.0		
	9	Calcium (as Ca)	mg/L	28.8	41.0	40.5		
	10	Magnesium (as Mg)	mg/L	10.3	14.4	18.0		
	11	Total colliforms	MPN/100 ml	446.6	92.4	11.0		
	12	Faecal colliforms	MPN/100 ml	146.3	32.4	3.3		
			Station: Katepurna					
				Season				
	Sr. No.	Parameter	Unit	Monsoon	Winter	Summer		
				Mean	Mean	Mean		
	1	рН	-	8.1	8.3	8.4		
	2	EC	µmhos/cm	411.6	376.3	457.2		
	3	DO	mg/L	6.2	6.8	6.5		
	4	BOD	mg/L	3.2	3.0	3.4		
	5	COD	mg/L	12.6	10.4	13.0		
	6	TDS	mg/L	245.3	225.6	276.3		
	7	Alkalinity	mg/L as CaCO3	189.5	190.0	227.3		
	8	Chloride	mg/L	24.5	22.6	28.0		
	9	Calcium (as Ca)	mg/L	46.8	41.3	44.8		
	10	Magnesium (as Mg)	mg/L	11.4	15.0	16.2		
	11	Total colliforms	MPN/100 ml	132.3	64.7	10.8		
	12	Faecal colliforms	MPN/100 ml	55.1	21.1	2.0		

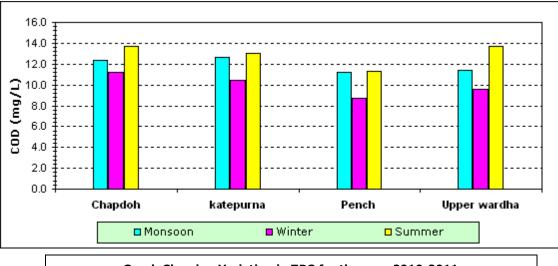

DF nple	Your complimentar use period has ended Thank you for usin	d. 19				
	,	e, Station: P	Pench			
	d Expanded Features			Season	1	
No.	Parameter	Unit	Monsoon	Winter	Summer	
			Mean	Mean	Mean	
1	рН	-	8.3	8.4	8.3	
2	EC	µmhos/cm	315.6	235.1	298.3	
3	DO	mg/L	6.4	7.2	6.4	
4	BOD	mg/L	2.9	2.7	3.0	
5	COD	mg/L	11.3	8.7	11.3	
6	TDS	mg/L	188.0	143.0	181.7	
7	Alkalinity	mg/L as CaCO3	156.0	122.4	158.0	
8	Chloride	mg/L	15.5	13.3	15.5	
9	Calcium (as Ca)	mg/L	32.8	28.8	36.7	
10	Magnesium (as Mg)	mg/L	9.6	8.1	8.4	
11	Total colliforms	MPN/100 ml	401.3	84.8	1.2	
12	Faecal colliforms	MPN/100 ml	138.6	33.0	0.3	
		Station: Uppe	erwardha			
			Season			
Sr. No.	Parameter	Unit	Monsoon	Winter	Summer	
_			Mean	Mean	Mean	
1	рН	-	8.4	8.3	8.3	
2	EC	µmhos/cm	261.9	289.9	373.8	
3	DO	mg/L	6.3	7.1	6.5	
4	BOD	mg/L	2.9	2.8	3.8	
5	COD	mg/L	11.4	9.6	13.7	
6	TDS	mg/L	156.3	174.4	226.0	
7	Alkalinity	mg/L as CaCO3	136.0	150.0	198.0	
8	Chloride	mg/L	11.0	14.8	22.2	
9	Calcium (as Ca)	mg/L	26.4	31.0	38.0	
10	Magnesium (as Mg)	mg/L	9.5	12.1	12.9	
11	Total colliforms	MPN/100 ml	325.8	43.4	4.8	
11	1					



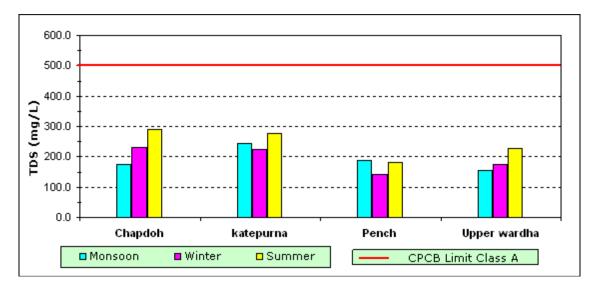
g Variation in pH for the year 2010-2011

Unlimited Pages and Expanded Features

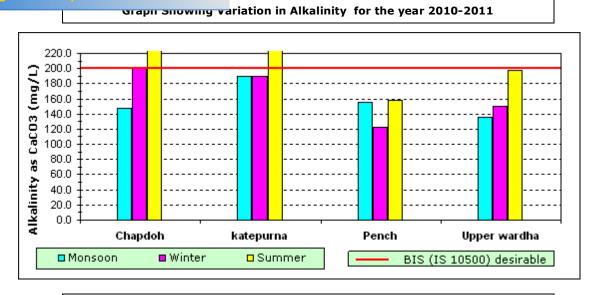


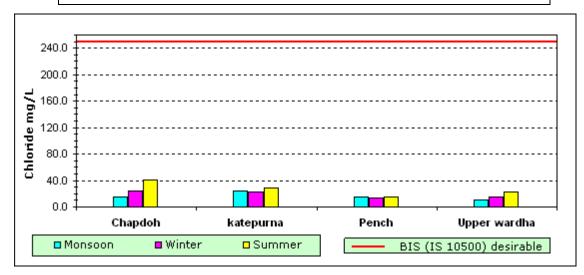


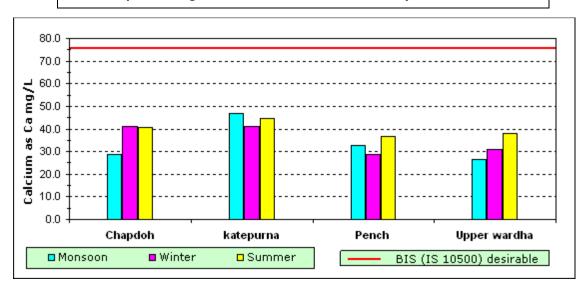
Unlimited Pages and Expanded Features



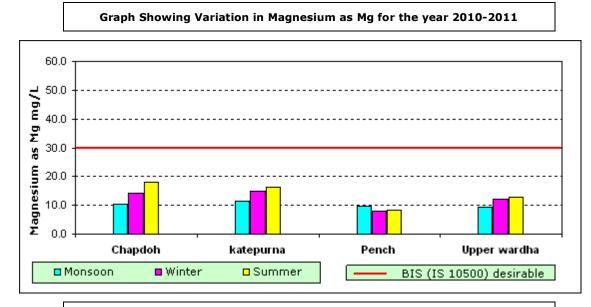
Graph Showing Variation in COD for the year 2010-2011



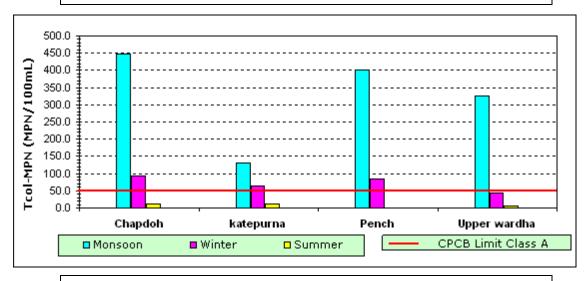


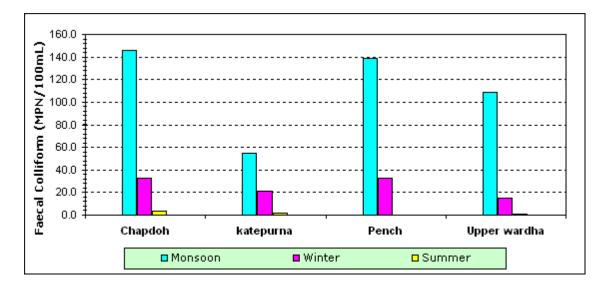

Unlimited Pages and Expanded Features

Graph Showing Variation in Chloride for the year 2010-2011



Graph Showing Variation in Calcium as Ca for the year 2010-2011




Unlimited Pages and Expanded Features

Graph Showing Variation in Total Colliforms for the year 2010-2011

Graph Showing Variation in Faecal Colliforms for the year 2010-2011

Sr. No.	Name of the Parameters	Tolerance Limit	Name	Remark		
		6.5 to 8.5	Sr. No.	Locations	Results	
			1	Daryapur	8.7	
1	1 pH		2	PENCH	8.6	
			3	SoitDindora	8.7	
			4	WagholiButi	8.7	
			Sr. No.	Locations	Results	
			1	Anantwadi	4.4	
			2	CHAPDOH	4.2	
			3	Damrencha	2.9	
			4	Daryapur	3.8	
			5	Deori	3.4	
			6	Dhaba	4.8	
			7	Drugwada	3.0	
			8	Kamthikhairi	3.0	
			9	Kardha	3.0	
			10	KATEPURNA	4.0	
2	Biological Oxygen Demand	2 mg/L	11	Kawatha	3.2	
-	(3 days at 27°C)	Z mg/ L	12	Khariya	4.2	
			13	KolgaonGod	4.0	
			14	Mahagaon	3.9	
			15	Manasgaon	3.8	
			16	Mathani	3.6	
			17	PENCH	3.4	
			18	Petta	2.9	
			19	Saiphal	3.4	
			20	Saiphal	3.4	
			21	SoitDindora	3.6	
			22	Takli Khetri	3.8	
			23	Tembhurdoh	3.2	

Summary of Result on the basis of Graph (2010 - 2011)

Click Here to upgrade to Unlimited Pages and Expanded Features

24	UPPERWARDHA	4.0	
25	Vishroli	4.0	
26	WadsaChinch	4.0	
27	WagholiButi	3.4	
28	WarudBagaji	3.2	

€ Con	DF	Your complin use period has Thank you fo	ended. or using	1			Γ
Click Here to	upgr	ade to	it	Name	e of Critical Location Id	dentified	Remark
Unlimited Pa	ges a	nd Expanded Feature	S	Sr. No.	Locations	Results	
	3	Dissolved Oxygen	>5 mg/L		Dhaba	4.0	
					Khariya	4.7	
				Sr. No.	Locations	Results	
				1	Anantwadi	284.0	
				2	СНАРДОН	260.0	
				3	Dhaba	280.0	
		Alkalinity		4	Kamthikhairi	344.0	
				5	KATEPURNA	260.0	
	4		200 mg/L	6	Manasgaon	264.0	
				7	Saiphal	256.0	
				8	Saiphal	256.0	
				9	SoitDindora	256.0	
				10	Takli Khetri	308.0	
				11	Tembhurdoh	328.0	
				12	Vishroli	328.0	
				Sr. No.	Locations	Results	
		5 Magnesium (as Mg)		1	Dhaba	34.0	
	5		30 mg/L	2	KolgaonGod	30.1	
				3	Takli Khetri	30.1	
				4	Tembhurdoh	32.1	

Comple	Your compliance of the second	s ended. for using				
Click Here to upgr		<i>omplete.</i> it	Name	e of Critical Location I	dentified	Remark
Chining of Ages a			Sr. No.	Locations	Results	
			1	Anantwadi	700	
			2	CHAPDOH	940	
			3	Damrencha	1600	
			4	Daryapur	700	
			5	Deori	78	
			6	Dhaba	790	
			7	Drugwada	700	
			8	Kamthikhairi	460	
			9	Kardha	490	
			10	KATEPURNA	340	
			11	Kawatha	1700	
			12	Khariya	1200	
	Total Colliforms	50	13	KolgaonGod	1100	
6		MPN/100 ml	14	Mahagaon	470	
			15	Manasgaon	1700	
			16	Mathani	1100	
			17	PENCH	700	
			18	Petta	920	
			19	Saiphal	1100	
			20	Saiphal	1100	
			21	SoitDindora	1400	
			22	Takli Khetri	460	
			23	Tembhurdoh	490	
			24	UPPERWARDHA	700	
			25	Vishroli	390	
			26	WadsaChinch	700	
			27	WagholiButi	330	
			28	WarudBagaji	1300	

₹ PDF Comple		s ended. for using ompletence	Name	e of Critical Location I	dentified	Remark
Click Here to upgr Unlimited Pages a	ade to and Expanded Feature	it	Sr. No.	Locations	Results	
			1	Anantwadi	260	
			2	СНАРДОН	260	
			3	Damrencha	350	
			4	Daryapur	220	
			5	Deori	45	
			6	Dhaba	220	
			7	Drugwada	220	
			8	Kamthikhairi	170	
			9	Kardha	230	
			10	KATEPURNA	110	
			11	Kawatha	790	
			12	Khariya	460	
			13	KolgaonGod	5	
7	Faecal Colliforms	Absent	14	Mahagaon	170	
	connorms		15	Manasgaon	700	
			16	Mathani	490	
			17	PENCH	260	
			18	Petta	240	
			19	Saiphal	490	
			20	Saiphal	14	
			21	SoitDindora	93	
			22	Takli Khetri	170	
			23	Tembhurdoh	170	
			24	UPPERWARDHA	110	
			25	Vishroli	140	
			26	WadsaChinch	9	
			27	WagholiButi	170	
			28	WarudBagaji	490	

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – V CONCLUSION

CONCLUSION

2010-2011 ک

Observing all the factors it can be concluded that, analysis result from all the locations shows increase in value of Biological Oxygen Demand, Total Coliforms & Faecal Coliforms. And some other parameters like Alkalinity & Magnesium also crossing it Tolerance limit. The value of Biological Oxygen Demand is very high, even exceeding beyond desired limit is due to the presence of organic matter, which also reduces oxygen content in the water. Water having excess Biological Oxygen Demand is not fit for human activities or consumption.

Biological parameter in all locations contain higher bacterial count is due to the discharge of sewage, drainage waste in to the water sources. Even increase in human activities discharge bacteria of various type in to the water, which increase the number of count in the water.

5.2 REMEDIAL MESAURES:

- Use of such water for salt tolerance crop is recommended based on special study.
- Before letting out to the down stream reservoir such source of water to be taken into consideration for the specific use.
- Classification of source may be as per use of water for irrigation based on Sodium Absorption Ratio, Percent Sodium, and Residual Sodium Carbonate.
- Effluent from non point sources to be treated before discharging into the river.
- Use of direct source of water to be avoided.
- Bathing at such location should be restricted.

Click Here to upgrade to Unlimited Pages and Expanded Features

CHAPTER – VI OTHER ACTIVITIES

Your complimentary use period has ended. PDF Complete.

Thank you for using **[HER ACTIVITIES OF** Lab. level – II, Nagpur

O GOVERNMENT OF MAHARASHTRA

Apart from monitoring of water quality network for Water Quality lab level II at Nagpur, the infrastructure facility and services of the lab are made available to the users from various Government, Non Government, Private sector as well as individuals.

The facility is availed by many users with testing of sample towards drinking purpose, irrigation purpose & study purpose.

During the year 2010-2011 many clients approached to the laboratory.

Effluent Samples Collected from Koradi Thermal Power Station, KORADI. REVENUE GENERATED DURING THE PERIOD

Sr. No.	Year	No. of Samples	Amount Received
1.	2010-2011	257	Rs.77,501

The valuable Clientele who availed the facility of the laboratory is as below;

- 1 Mr. Pratap Reddy, DGM, Lanco Vidarbha Thermal Power Limited
- 2 R.N.Kirkte, M.Tech Student, Nagpur
- 3 P.G.Patil, M.Tech Student, Nagpur
- Mr.Ashish D. Bhramankar, Student of M.Sc.II (Pure) P.G.Department of Geology R.T.M.Nagpur 4 University, Nagpur
- Mr. Nandeshwar H. Borkar, Student of M.Sc.II (Pure) P.G.Department of Geology R.T.M.Nagpur 5 University, Nagpur
- 6 Gram Aarogya Poshan va Paani Purvatha Swachta Samiti, Siraspur Tal: Chimmur Dist: Chandrapur
- Dr. P.R.Bajaj Principal of G.H.Raisoni College of Engineering CRPF Gate No:3 Hingna Road, 7 Digdoh, Nagpur
- 8 Tulsiramji Gaikwad-Patil College of Engineering & Technology Mohgaon, Wardha Road, Nagpur
- 9 ABHA College of Engineering Mohgaon, Wardha Road, Nagpur
- Mr.Ajay N.Burile M.Tech Student (Env.Engg), G.H.Raisoni College of Engineering, Nagpur 10
- 11 Avanti Institute of Cardiology Pvt.Ltd. 5, Abhyankar Road, Dhantoli, Nagpur-12
- Assistant Divisional Engineer (Maintenance), Central Railway, Warora 12
- 13 S.B.Jain Institute of Technology, Management & Research, Katol Road, Nagpur.

Your complimentary use period has ended. Thank you for using PDF Complete.

ch Student G.H.Raisoni College of Engineering Nagpur

Unlimited Pages and Expanded Features

ent Medical College Nagpur

- 16 Mr. S.N.Wankhede Sr.Section Engineer (W) C.Railway Warora
- 17 Mr.Dipak G. Mangrulkar (M.Tech Student, R.T.M.Nagpur University)
- 18 Sub Divisional Engineer Irrigation Sub Division. Nagpur
- 19 Mangalam Icon Condominium, Shivaji Nagar Nagpur
- 20 Sub Divisional Engineer, Rural Water Supply, Sub Division, Z.P. Sindevahi Tal: Nagbhid, Dist: Chandrapur
- 21 Senior Section Engineer (Works), Central Railway .Warora
- 22 Mr. R. L. Rodriques, C/O V.A.Thomas , 19-A.Redross Road, Sadar. Nagpur.
- 23 Director M/s. BHLA ENTERPRISES PVT. LTD. "Krishana House" 71/A ,S. T. Bus Stand Road , Ganeshpeth , Nagpur - 440018
- 24 Sarika M. Mankar, M.tech student of Environmental Engineering G.H.Raisoni college, NAGPUR.
- 25 Vice Secretory, Jagat Towers Association, NAGPUR
- 26 Ku.Yogita V. Badge Ph.D. Student, R.T.M. Nagpur University
- 27 Ku.Kiran Borkar, P.hd. Student, Dist.Chandrapur
- 28 Dr.A.M.Ittadwar, Principal, Grunanak college of pharmacy, Nari, Kamptee Road, Nagpur
- 29 Mr. Prakash P. Shrikhande, M.tech student, GHRCE.
- 30 Mr. Nilkant Awghate, Shweta Paper Ind. Pvt. Ltd., Udyog Nagar, Bhandar
- 31 Mr. Mayur A. Jirapure, M.Tech Student, G.H.Raisoni college of Engineering, Nagpur
- 32 Mr. Amit Kharwade M.tech student, G.H.Raisoni college of Enginnering, Nagpur
- 33 Mr.Amit Rathod Plot No. N-3, Reshimbagh, Nagpur-9
- 34 Mr. Mangesh P. Bhorkar, M.tech student, MIET, Gondia.

Your complimentary use period has ended. Thank you for using PDF Complete.

PDF Complete. activities:

logy project sub division, Nagpur.

Government Analyst, Water Quality Lab Level-II, Nagpur and All employees of Water Quality Lab Level-II, Nagpur. participated in two days wokshop in Nashik organized by Superintending Engineer, Nashik, in which discussions were done among the employees of all Water Quality Labs Level-II, of HP Maharashtra related to the problems and their solutions during working in Laboratory.

ual Report

Water Quality Monitoring through Water Quality Lab Level-II Nagpur for the Year 2010-2011

<u>A N N E X U R E S</u>

Chapter	Particulars	Page No.
1	List of Clients 2010-2011	71 - 74
2	Quality Policy towards ISO 9001:2008	75
3	Quality Objectives towards ISO 9001:2008	76
4	Photographs of ISO 9001:2008 Recertification audit	77 – 78
5	Lay Out of Water Quality Lab level- II, Nagpur	79

e to upgra I Pages a	e of Client	Purpose of Analysis
1	Mr. Pratap Reddy, DGM, Lanco Vidarbha Thermal Power Limited	Analysis for General Purpose
2	R.N.Kirkte, M.Tech Student, Nagpur	Analysis for General Purpose
3	P.G.Patil, M.Tech Student, Nagpur	Analysis for General Purpose
4	Mr.Ashish D. Bhramankar, Student of M.Sc.II (Pure) P.G.Department of Geology R.T.M.Nagpur University, Nagpur	Analysis for General Purpose
5	Mr. Nandeshwar H. Borkar, Student of M.Sc.II (Pure) P.G.Department of Geology R.T.M.Nagpur University, Nagpur	Analysis for General Purpose
6	Gram Aarogya Poshan va Paani Purvatha Swachta Samiti,Siraspur Tal:Chimmur Dist:Chandrapur	Analysis for General Purpose
7	Dr. P.R.Bajaj Principal of G.H.Raisoni College of Engineering CRPF Gate No:3 Hingna Road, Digdoh, Nagpur	Analysis for Drinking Purpose
8	Tulsiramji Gaikwad-Patil College of Engineering & Technology Mohgaon, Wardha Road, Nagpur	Analysis for General Purpose
9	ABHA College of Engineering Mohgaon, Wardha Road, Nagpur	Analysis for General Purpose
10	Mr.Ajay N.Burile M.Tech Student (Env.Engg), G.H.Raisoni College of Engineering, Nagpur	Analysis for General Purpose
11	Avanti Institute of Cardiology Pvt.Ltd. 5,Abhyankar Road, Dhantoli, Nagpur-12	Analysis for Drinking Purpose
12	Assistant Divisional Engineer (Maintenance), Central Railway, Warora	Analysis for General Purpose
13	S.B.Jain Institute of Technology, Management & Research, Katol Road, Nagpur.	Analysis for Drinking Purpose
14	Shubhangi H. Lokhande M.Tech Student G.H.Raisoni College of Engineering Nagpur	Analysis for General Purpose

ck Here to limited Pa		d Expanded Features e of Client	Purpose of Analysis
-	15	Mr. Dileep Helchel Government Medical College Nagpur	Analysis for General Purpose
-	16	Mr. S.N.Wankhede Sr.Section Engineer (W) C.Railway - Warora	Analysis for General Purpose
	17	Mr.Dipak G. Mangrulkar (M.Tech Student, R.T.M.Nagpur University)	Analysis for General Purpose
	18	Sub Divisional Engineer Irrigation Sub Division. Nagpur	Analysis for General Purpose
	19	Mangalam Icon Condominium, Shivaji Nagar Nagpur	Analysis for Drinking Purpose
	20	Sub Divisional Engineer, Rural Water Supply, Sub Division, Z.P. Sindevahi Tal: Nagbhid, Dist: Chandrapur	Analysis for General Purpose
	21	Senior Section Engineer (Works), Central Railway .Warora	Analysis for General Purpose
	22	Mr. R. L. Rodriques, C/O V.A.Thomas , 19-A.Redross Road, Sadar. Nagpur.	Analysis for Drinking Purpose
	23	Director M/s. BHLA ENTERPRISES PVT. LTD. "Krishana House" 71/A ,S. T. Bus Stand Road , Ganeshpeth , Nagpur - 440018	Analysis for General Purpose
	24	Sarika M. Mankar, M.tech student of Environmental Engineering G.H.Raisoni college, NAGPUR.	Analysis for General Purpose
	25	Vice Secretory, Jagat Towers Association, NAGPUR	Analysis for General Purpose
	26	Ku.Yogita V. Badge Ph.D. Student, R.T.M. Nagpur University	Analysis for General Purpose
	27	Ku.Kiran Borkar, P.hd. Student, Dist.Chandrapur	Analysis for General Purpose
	28	Dr.A.M.Ittadwar, Principal, Grunanak college of pharmacy, Nari, Kamptee Road, Nagpur	Analysis for Drinking Purpose

k Here to imited Pa		d Expanded Features	
	NO.	e of Client	Purpose of Analysis
	29	Mr. Prakash P. Shrikhande, M.tech student, GHRCE.	Analysis for General Purpose
	30	Mr. Nilkant Awghate, Shweta Paper Ind. Pvt. Ltd., Udyog Nagar, Bhandar	Analysis for General Purpose
	31	Mr. Mayur A. Jirapure, M.Tech Student, G.H.Raisoni college of Engineering, Nagpur	Analysis for General Purpose
	32	Mr. Amit Kharwade M.tech student, G.H.Raisoni college of Enginnering, Nagpur	Analysis for General Purpose
	33	Mr.Amit Rathod Plot No. N-3, Reshimbagh, Nagpur-9	Analysis for General Purpose
	34	Mr. Mangesh P. Bhorkar, M.tech student, MIET, Gondia.	Analysis for General Purpose
	35	M/S, Bhandara Zillha, dugdh utpadak sahkari sangh maryadit, Bhandar.	Analysis for General Purpose
	36	Miss Monali W. Gotmare, M.tech student, Final year (envi engg), G.H.Raisoni coolege, Nagpur.	Analysis for General Purpose
	37	Director, G.H. Raisoni college of Engineering, Nagpur.	Analysis for Drinking Purpose
	38	Rama M.Nimje 123, Vitthalwadi, Hudkeshwar road, Nagpur.	Analysis for General Purpose
	39	Principal, Shankarrao Dhawad Polytecnic, Rajive Nagar, Nagpur.	Analysis for General Purpose
	40	Civil Department, S.D.M.P College, Nagpur.	Analysis for General Purpose
	41	Chairman / Secretory, Gramin paani purvatha va swachchta samiti, Gram Panchayat: Chak Phutana, Dist: Chandrapur	Analysis for General Purpose
	42	Government Polytechnic, Nagpur.	Analysis for General Purpose

Click Here t Unlimited P		de to d Expanded Features e of Client	Purpose of Analysis
	43	Sr. Section Engineer (W), Central Railway, Warora.	Analysis for General Purpose
	44	Mr. Deepak Kothari, 301, WHC Road, Dharampeth, Nagpur.	Analysis for General Purpose
	45	Sub Divisional Officer, Lower vena cannal, Sub Division No. 6, Hinganghat	Analysis for General Purpose
	46	Mr. Mangesh P. Bhorkar, M.tech student, MIET, Gondia.	Analysis for General Purpose
	47	Prof. G.T. Paliwal, Deptt. Of Zoology, S.S. Jaiswal College, Arjuni / Morgaon, Dist : Gondia	Analysis for General Purpose
	48	Mr. Vikas R. Agrawal, M.Tech Student, II nd Year, MIET, Gondia	Analysis for General Purpose
	49	Miss. Snehal G. Juare Ph.D Student, R.T.M Nagpur University	Analysis for General Purpose
	50	Shri. Roshan A. Rathod, Ph.D. student, R.T.M.Nagpur University.	Analysis for General Purpose
	51	Miss. Mrunalini V. Khund, Ph.D. Student, R.T.M. Nagpur University	Analysis for General Purpose
	52	M/s, S.K.Banerjee, Builders, Engineers & Contractors, 6th Floor "LANDMARK" Ramdaspeth, Wardha Road, Nagpur-10	Analysis for General Purpose

Unlimited Pages and Expand

Your complimentary use period has ended. Thank you for using PDF Complete.

FY LAB, LEVEL – II, NAGPUR

HYDROLOGY PROJECT DIVISION, NAGPUR

QUALITY POLICY

Water Quality Lab, Level . II, Hydrology Project Division, Nagpur, has laid down the following Quality Policy:

- It is committed to monitor effectiveness of QMS time to time & will also work for continual improvement of the same.
- It is also committed to work for continual improvement in its technology, processes and to increase competency levels of its personnel.
- It is committed to delight the customer by fulfilling customercs requirement, statutory / regulatory requirements and requirement which is not stated by customer but which is required for application of its services.

*Sd/-*Executive Engineer Hydrology Project Division Nagpur

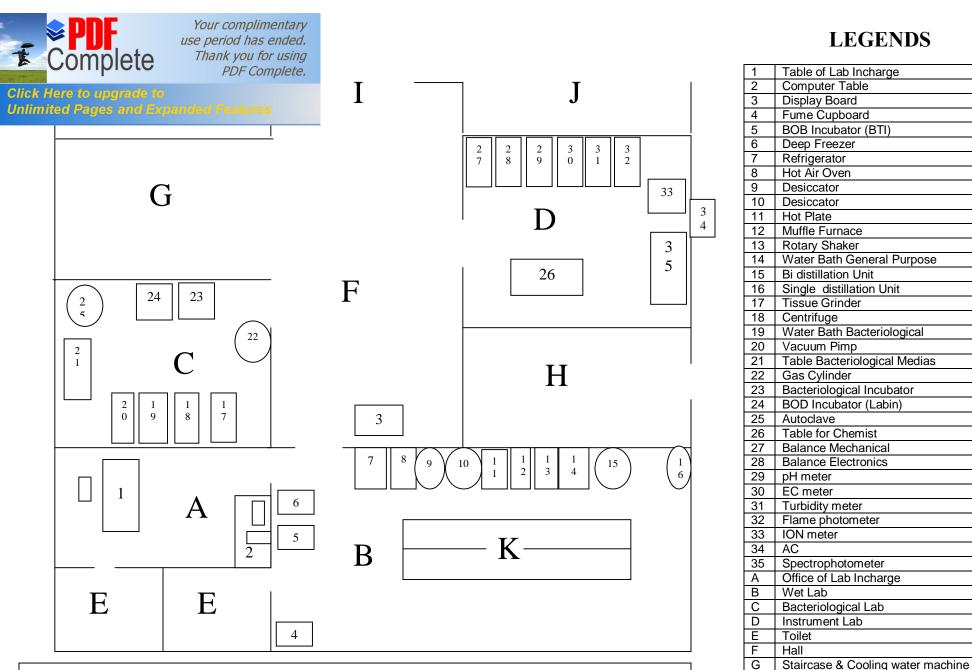
Your complimentary use period has ended. Thank you for using PDF Complete.

TY LAB, LEVEL – II, NAGPUR

PROJECT DIVISION, NAGPUR

QUALITY OBJECTIVES

Quality objectives are established at relevant functions and levels within the organisation. These include :


- The parameters of testing for which the analytical capability of the laboratory has not been established will be recorded for making efforts for improvement and widening the scope of services.
- Efforts will be made to enhance competence level of all employees at each level.
- Efforts will be made to increase the number of jobs.

Reference: - Statement of Goals (QF/MR/12)

Sd/-Executive Engineer. Hydrology Project Division Nagpur

84

LAYOUT OF WATER QUALITY LABORATORY LEVEL - II , NAGPUR

Η

Т

J

Κ

Electric Room Main Entrance Gate

Analysis Table

Parking of Four whhler